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Abstract

This paper proposes an artificial dielectric consisting of a random array of short,
thin wires (εr →∞) embedded in a relatively low dielectric medium. Calculations for
the average εr, RC time constant and the skin effect are outlined for such a medium.

1



1 Introduction

A high-εr artifical dielectric material typically consists of an ensemble of very-high-εr particles
(such as barium titanate) mixed into a low-εr dielectric (with a high particle density). Even with
the preferred axes of polarization (e.g. εr=3000 in some direction, say z, but relatively lower in
the x and y directions) the effective εr found by averaging over 4π steradians of orientation can be
quite high (e.g. 1000).

εr ≡ relative dielectric constant (compared to free space) (1.1)

2 Average εr

Since the very high εr2 particles are mixed into an insulation dielectric of low εr1 , the electric field
is pushed into the low εr1 medium. The spacing between the particles determines how large an
effective εr can be achieved. A simple model is shown in Fig. 2.1 where d1 is the spacing between
the particles in the εr1 medium and d2 is the size of the εr2 particles. A one dimensional, series
capacitance, approximation of the average εr is

εravg ≈
[
d1

εr1

+
d2

εr2

]−1

[d1 + d2] (2.1)

Of course, a more detailed calculation (or experiment) can obtain a more accurate result.

Figure 2.1: Array of very-high-εr2 particles in background εr1 dielectric

The electric field being relatively small in the particles, suppose we let εr2 →∞. Then equation
(2.1) becomes

εravg ≈ εr1

[
1 +

d2

d1

]
(2.2)

The relative spacing between the particles together with the background εr1 determine εravg .
With little electric field in the particles, we might think of replacing these by conducting

particles (e.g. copper). However, high conducting media exclude the magnetic field, lowering the
effective relative permeability µr below 1.0.
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3 Conducting spheres as very high εr2
particles

Let

εr2 � εr1 . (3.1)

Spherical εr2 particles, of diameter D and number density N , can be related to the background,
εr1 , medium as [1]

εr2 = εr1

1 + 2h

1− h
, (3.2)

where

h =
πD3N

6

εr2 − εr1

εr2 + 2εr1

. (3.3)

From equation (3.2), for a high εr2 , we need h near 1. For a cube of side a (molecular cubic
packing), a3 = 1/N ,

h ≈ π

6

[
D

a

]2

. (3.4)

If D/a ≈ 1 then εr2 is not very large and this is inconsistent with the assumption in (3.1). Not
desirable!

A similar inconsistency is encountered when considering disk shaped particles.

4 Thin wires as very high εr2
particles

Instead of spherical or disk particles, let us consider thin wire particles as in Fig. 4.1, with

h

a
≈ 10 (4.1)

Figure 4.1: Ensemble of short, thin-wire conductors

The length of 2h, shorts out the electric field, noting the random orientation. The magnetic
field is perturbed only over the distance of the order of the radius, a.

3



For εravg ≈ 9 we have an average propagation velocity in the medium

v ≈ c

3
≈ 108 m/s. (4.2)

We need to propagate pulses of less than 100 ps. In such a medium the spatial pulse length is

l = c∆t ≈ 1 cm. (4.3)

So let us consider wires with

2h ≤ 1 mm,

2a ≤ 0.1 mm. (4.4)

These would be resonant at

λ/2 = 1 mm,

f =
v

λ
≈ 0.5× 1011 Hz = 50 GHz, (4.5)

which should be high enough.
Perhaps the wires should be coated with a thin layer of dielectric before mixing them in with

the background dielectric. This would avoid conducting contact between the wires. Practically
speaking, one might draw a long fine wire, coat it, and then chop it into small lengths. One
conducting end will only relatively rarely contact another conducting end.

The overlapping of wires may result in an increased capacitance. An all aligned 3D array is
shown in Fig. 4.2(a) where the spacing is of the order of a. With the random orientations shown
in Fig. 4.2(b) there is still some enhancement as long as the spacing is � 2h.

(a) Aligned
3D array

(b) Random 3D array.

Figure 4.2: Aligned and random 3D arrays of thin wires.
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5 RC time constant and skin effect

The rise time, tr, is related with the capitance, C, and impedance, Z, as

C =
tr
Z
, Z =

1
√
εr

[few hundred] Ω. (5.1)

One may consider a thin wire particle as a biconical antenna with a source at the center as shown
in Fig. 5.1. The resistance of this antenna is given by

R =
2

σ

h

πa2
. (5.2)

Figure 5.1: Biconical antenna approximation of very-high-εr2 thin wires

The RC time constant is therefore

RC =
2

σ

h

πa2

tr
Z

= ηtr, (5.3)

where

η =
2

σ

h

πa2

1

Z
, (5.4)

and the ratio h/a ≈ 10 or 100.
We need RC to be small compared to the times of interest, say 10 ps or less. Consider copper

wires, σ = 5.8× 107 S/m. Let h/a = 10, h = 1 mm, a = 0.1 mm, and Z = 100 Ω. Then

η = 1.08× 10−5 (5.5)

RC = 1.08× 10−5tr (5.6)
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Accounting for the skin depth will make the coefficient larger. At 100 GHz, Rs = 0.83 Ω, i.e.,

R = Rs
h

2πa
≈ 0.1405 Ω. (5.7)

Double this to account for the two halves of a biconical antenna

R = 0.28 Ω, (5.8)

C =
tr
Z
, (5.9)

tr =
h

v
≈ 0.5× 10−3

108
= 5 ps, (5.10)

RC = R
tr
Z
≈ 0.28

5× 10−12

100
= 1.4× 10−14 = 14 fs; excellent, low loss! (5.11)

So skin effect should not be a big problem.
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