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Abstract

This paper is focused on an analytical field calculation and the focal waveform produced at the second
focus of a prolate-spheroidal reflector.



1 Introduction

This paper is based on analytical interpretation of the formulae developed in [1],[2],[3]. The focal
waveform produced at the second focus of a prolate-spheroidal reflector was produced.

2. Fields at Second Focus

Summarizing, we have [1]
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2.1 Prepulse Term Ep2 after the Impulse

What happens to the pre-pulse term after the impulse, ie after the truncation at the aperture boundary
(Y= Yp, or b for special case)

Let Ep = tangential E field (x component ) on S, due to pre-pulse wave

Then we have
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After we see the edge of Sa, neglecting diffraction terms from this edge, and approximating Ep; by the
TEM pre-pulse wave out to this edge we have , for step-function excitation

E pt= time independent pre-pulse field on Sy

Epl =0 the derivative being zero after the aperture edge is seen (2.4)
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Ep Ept dS = constant , i.e. a step term.



So we need the static Ep¢. As before, since we are confining ourself to the z-axis we can use a uniform
field on the projection plane to give E; in the above integral.

From Section 2 (2.11), [1] at r; = z( (aperture plane center)
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We need this extended over S, , since , as we have seen , for the z axis only the uniform field terms (on the
projection plane) need be considered (by symmetry).

On the projection plane at z =-a (2.7),[1]
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On the projection plane at ¥ = 0 the E-field has only an x component
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Map this back onto the r 1system
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Now on Sa we have
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The tangential part is
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The x component is
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To solve this integral consider the special case zp=0,¥p = b,r =ro Then from 509 (4.2)&(4.3)
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At the end we get
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3. Analytical Waveform
We take the simple case from [1,2] for which,
zp=0,b=¥Yp=.5m, a=.625m, zg =.375m, t5 =100ps
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Figure 3.1 Analytic Waveform at the Second Focus
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4.Conclusions

We now have an analytic approximate waveform at the focus for the interesting (and useful) case of
zp=0. This includes the “post-pulse” which we should not extend very far to later time, since other

scattering begins to have an effect. This can be used for comparison to experimental results and more
general numerical computations.
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