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Abstract

The point-plane spark gap design proposed by J. C. Martin of
AWRE has achieved wide use in recent pulsed power systems. Extremely
precise breakdown time is one of this gap's mest useful properties;
an explanation of this behavior is developed using J. C. Martin's
gas breakdown relations as a starting point. Martin's definition of
the "effective time" of a switching voltage pulse is also derived.




1. Introduction

The - p01nt-p1ane pu]se-overvo]ted spark gap des1gn of J. C Mart1n
has achieved wide application in pulsed power systems. Its primary
advantage is the extremely precise time of sparkover, or switch =
closure, which this switch exhibits. Mr. Martin has often explained
this phenomencn, but the author knows of no written exposition on

- the general subject of point-plane spark gaps which includes such
an explanation. Since this may be useful to both system designers
and users in the pulsed-power field, the following is a very simple
discussion ‘of streamer propagation data the use of streameyr: . velocity
relations and the app11cat1on of these data to p01nt-p1ane gap des1gn.

II. Breakdown Iata and Streamer Velocigz

Suppose the fo]low1ng experiment is performed Given a:.point-
-plane spark gap, and a source of voltage, we apply a rising voltage
‘waveform to the gap and measure the streamer "formation time"; in-

this case defined as the time interval between initial application

-of the voltage and onset of heavy -current conduction across-the gap.
Suppose further that the voltage source has a simple linear .vamp .

‘time dependency, for s:mp11c1ty in the present arguments, We will.

generalize this a bit later in the d1scuss1on. :

Then the.experxmentai set-.p-cou]d-Teok 1ake Figﬁret1.'”.
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Then we vary the gap spacing, d, for a given rate of voltage
increase, a. In the general case, assuming no other important
parameters in the problem, we will get a relation between the
breakdown voltage V, the gap spac1ng d and the time to breakdown :
Tos OF this fonnr . T

'7':: V PT ng =-x'(a:censtant) :'“ | .:'~:,:tf :-(2)

:This equat1on (2) is all we can wr1te d1rect1y from our exper1menta1
~data. - I¥ we now want to know the. propagation velocity of the
streamer across the gap, we can try to deduce an appropr1ate form
of it from (2).

It is 1mportant to note”that the velocit: re]at1on we are
seeking cannot be uniquely determined from (2{ and this will be
shown by example, - ‘However, one can examine several possible velocity
-relations to see which most nearly fits the current theory of stream-
er-propagation, and select that relation for further use. One of -
.the chief wuses for the streamer velocity relation will -be to explain
the small observed percentage jJitter obtained from point-plane spark
gaps, which will be done in sect1on 3 of this d1scussion._,;.: _—

Now we assume.a form for the streamer ve1oc1ty, and then 1nte-
grate it to-obtain (2). As one example, we assume :

where x is the length of the streamer at- a given instant, and A is
a constant. Then, with such a "separated-variable" formula, we can
integrate quite easily.

£d To , -
j xSdx = i‘ yNat. . - {4)
(V) : f -

" The limits of 1ntegrat1on correspond to stating that the streamer
starts out at t ® o, x = 0, and reaches the other side of the gap
(x = d) at time t = Ty, Then, with the use of (1), we get
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Now, from (1) we see that the voltage at breakdown, V., is given by

=
i

0o=To (7
_ sonfé) can be rewritten as

‘ dsﬂ- _ AVONTO . | : 

(8

Then®(8) can:be rearranged to give the assumed experimental data . . ..
equation format of (2). e

Mr, Martin normally writes equation (2) in terms of F.(the mean break-
cown field, defined-as-Vg/d), T, and d.. So.we follow this convention,
rearranging_(g) in accordance w?th the definition of F to read

ASEE IR S L m

i further convention of Martin's is tb setfthénexponent on F equatl
w0 1. This can be done by writing:
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Now we can do the same thing to (2) finding:

FTOQIP dP = kﬁﬂE'K (a constant) (12)

cOmParmg (11) and (12), we can 1dentify T

1.9
N~ P
N-s-1  M4p | (13)
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" .
and AN, KL*_a;

So the streamer velocity relation in (3) can be related to the ex-
perimental data expressed in (12) by the relations (13).

As a concrete example, - ‘consider J.C. Martin's breakdown equat1on for
point-plane gaps in a gas: SR

F.I___eJ[s d% - S SR E (14)

(F-is in kV/om, Te is inps, d in cm. K7=.23 for air-at: STP the
reIat1on between K‘ and eur constant K w111 be g1ven 1ater) e

Here Tg is def1ned as the “effect1ve t1me,“ or the interval between

the 88%-height points of the voltage pulse, The reasons for this
definition will be touched on later, For now, we note that the identi-
fications (13), when applied to (12) and (18), give the fo]low1ng
results for the streamer velocity constants:

=1 _MeP 1 e o
"% P8 o (19)




So the streamer velocity, in the same unit system (MV,}(S, cm) as

(14); is given by

dx . v6 .1
o ';'4 (16)

dt Kb

Whiih s the relation also given by Martin as the one he prefers to’
use’y apart from a factor 1/5 which will be exptained further on,
This factor will appear when we relate Martin's constant, K°, to the
constant K used in (12), :

In regard to the physical "reasonableness® of (16), note that as
the streamer starts its journey (x = 0) it would seem to have infinite
velocity, Of course, at this time V is also very near zero, so this
- 1s'misleading, The main argument in favor of (16) is that in a point-

plane geometry, the streamer moves out into a diverging (decreasing) -
field pattern as it leaves the pointed electrode, and so could be
expected to slow down, since the local field in the vicinity of the

N streamer tiPStOY‘ES progressively less -.energy....This,.of. course, -ignores. .-

the probable effect that the streamer itself has a strong influence on
the local fieid, but the arguments are only approximate at bast, At
Teast, (16) seems to have some basis in the expected physical behavior.

It was remarked earlier that (16} is not a unique solution to

the problem; we can show this by finding yet another streamer: velocity

relation which leads to the identical "data" eguations (12-14) yet

. has markedly different properties. Simply change the distance variable

in the velocity relation from x to d-x. Then (16) becomes.

~'Now integrating this over the saﬁe ranges of x and t as before, and
continuing to use the Yinear time-volitage re]ation (1). we get

4 : .1 'To . . i |
K6} (d-x)% dx = aGItsdt (18)
Then
dﬁ_TO? .- :.- .. oo :' 3 :: a (]9)

1J. C. Martin, AWRE, Private Communication



or

k65 - YTy (20)
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This 1s 1dent1ca1 to (11), w1th S= 4 ‘N=6 as derived before. ' But the .
form of the streamer velocity equatlon (17) is_markedly di fferent from
{16), since in (17) the streamer velocity becomes truly infinite at the
‘énd of the pulse, where V>0, rather than quasi-infinite (indefinite)
at the beginning of the pu]se, where Va0, The real case probably’ com-
bines these effects, with the streamer moving rapidly away from the
pointed electrode, then slowing down somewhat as the electric field
decreases, then gathering speed again as it nears the planar electrode
where the field between streamer tip and electrode increases again
with x. This kind of relation can be ‘represented by a velocity equa-
tion of the form:

dt  KSXZ (d-x)? |

where the reader can show that essentially the same "data" equation
(14) will result upon integration, with a modified constant term.

So much for the basic uncertainty in the streamer velocity relation,
In summary, we have shown that given only the basic data of breakdown
voltage, breakdown time and gap spacing, no unique form of the velocity
relation can be derived. However, one can fall back on other data,
such as time-resoived photography of sireamer propagation, to uphoid
a particular choice of the velocity relation which is consistent with



the time-integrated data. Such a choice is given for gases, by (16)
according to J.C. Martin (we will multiply (16) by 1/5 later on to
give Martin's result) and we will use this relation for our further
discussion of streamer velocity and breakdown data.

We now return to an 1mportant factor which has been "glossed over"
up to this point. Note that in (14), the time Teis defined as an
"effective time" equal to the width of the voltade pulse at the a8%
amplitude points, However, in (22), the time factor is 5/7 T., which,
for a:linear ramp voltage pulse, is surely not the indicated wﬁdth at
8?%'amp1itude. Why not, and why-choose the 88% figure in the first

The reasons behind these factors can be seen by man1pu1at1ng the
streamer ve10c1ty relation (16), using it to perform a "thought
experiment “

Suppose we do our or1g1na1 experiment with several different
pulse shapes, rather than the linear ramp voltage assumed in {1).
Then, for each new pulse shape, a new set of breakdown data will
result, How can we unify these data under one roof?

To be quantitative, we cons1der the family of pulse shapes given
by ' ' . S

¥(t) = atV | (24)

where N has any value > zero that we wish, The fam11y of voltage
pulses represented by (24) is quite large, and has the common property
of being monotone increasing in time (the curve and its first deriv-
ative are always >0 while the second derivative has a constant alge-
braic sign, either (+) or (-) ). Some curves, such as the popular
1-cos{wt) function, do not have this property and cannot be well
approximated by (24). However, for po1nt-p1ane gaps we usually want
the gap to break over during the rising portion of the pulse (as in
peaking-capacitor generators) so this part of the voltage waveform
can be closely approximated by correctly choosing a« and N in (24).

A sketch of the rather wide family of curves represented by (24) is
shown in F1gure 2.



Sketch of the possible curves obtainable
by correct choice of a and N in (24)

Now if we take (16) to adequately represent the form of the streamer

Figure 2

velocity in a point-plane gap for given V(t), then we can substitute

the voltage pulse (24) into (26) and der1ve the resu1t1ng “breakdown

data™ resu]ts.

Proceed1ng,

ax . y6 aﬁtSN
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| NOW_Sj“chTo is the observed breakdown time of the gap,‘(lsl-giveSius?
et o (28)

o

' where Vo is the observed breakdown voitage,'

"Then (27) becomes

Bq® V0T,

5 T BNl (29)
. V'O .
.~Then, as before, let F = T So
_ 6 _
FF'dT
(Ge) - )
_Then
F 6d T, ¥ o 1
T K 8

js the resulting breakdown data relation.

Now, for a given gap spacing (d) and total breakdown time Tos we have

a wide variety of breakdown field levels F {hence wide variation in
voltage V,) depending on the shape of the voltage curve (or value of N}
chosen. What, if;anything,-do.a§7=these data have.in .common? Suppose
we try to relate them by defining an "effective time" Te such that

for a given gap spacing and To, the breakdown voltage is independent

of the exact shape of the pulse used. This would be a useful artifice.

i

.



How is T, to be defined?

We follow J.C. Martin's lead and try using the time interval between
a certain pulse amplitude and the peak time T,. Here, we assume

that the pulse falls very steeply just at Ty, which amounts to saying
that the gap closes very rapidly compared to Te {resistive and induc-
tive times are small), An extension of this is to define T, as the
interval during which the pulse exceeds a given fraction of its
observed peak amplitude, which is Martin's definition, .and includes ..
the effect of finite pulse fall-time. The difference between these
definitions is generally small and will not be considered further.

_Jfﬁ;Then,mdéfine Ta as the time intervaikbetweEH the amplitudes
BYo and V,, where O<s<1 is to be correctly chosen.
Using'(24)-wejhave the definitions:  )

and

Bv -g.“T N T ' | Lol = (35)

whence

(38)

and

b
Théh?byrxtrié1'definition'of "effectiﬁe timg“.§e¢Qme5 =

=10~



“Now from (32) again, . .
e/ =T e
b1 ¢ B

Te = To ;(1--_53?/ ‘.“)- - o (38)

If we.want to write this kind of "effective time" function (38)
into (31) to eliminate all dependence on N, we see that the problem
is to find 8, and some constant multiplier wh1ch we will ca1} s,

such that
= l/N-,. 5T,
T, =T (1-8 ).—.6 0 {39
Thus,
N . -
-8 S s osael - (a0)

A little time spent sketching curves will convince the reader that
the basic form of the functions on either side of (40) is remarkably
similar over the range of N20. [In fact, the congruence of shapes is
. excellent, So one can be sure that .choosing 8 and § properly will
1ndeed provide a proper sclution to the problem.

Perhaps the simplest way to force the approx1mate equality .in
(40) is by trial-and-error, We will use a semi-systematic method
for this. First, we set the N=o0 values of (40) exactly equal, since
this va]ue does not depend on g, Then

56 '- (41)

#
—
n

or | - § =

o=

-11-



This is the "missing" factor of 1/5 in equation (16), and we' -
will come back here later and use it.

Now we set the two sides of (40) exactly equal for several other
vaIues_of N and observe the results: Try N.= 2.

(1-6%) %-g - | (42)"

B =0.852 - B R L € 1 I
Similarly, for any N,

Mo 1 | (45)

(GNH) o

We 1nqu1re about the limit of (46) as N grows arbitrarily large.

Not1ng : _ . De e _ PR : -

we write

fl

g = N En(})_-]n-(j s %ﬁ)] (48)

and since

~12-



we get

Hs»w ' :

So g varies almost not at all over the range 1<N<=. ‘We can be sure
this variation is smooth and non-oscillatory (so we haven't just
checked a pair of "nice" values of N) by our prior curve-tracing
experience, or by noting that 48 is negative over the entire range
of positive N. Y ) : R

~ The limit of (47) as N vanishes can also be eQa]qated,_and turns
out to be B o S At _

SN0 -

Hence, we have very little variation in g frem 1 to = in N, but some-
what more variation from 0 to 1. If we insist on covering the entire
range of possible voltage waveforms with a single value of B, this value
should be some sort of average over the possible values of N.

It is apparent, from the sketch of Figure B-2, that the family
of curves represented by (24) divides evenly at N'= 1, with curves .
of lesser N having negative curvature, and those for greater N showing
- positive curvature, Also, given a curve with a certain N value, a
“mirror-image" curve exists with exponent value 1/N.

That is, if the nofma]ized'formrofi(ZQ);*wfth'V'= 1att=1, is
T RN S ()

then exchanging N for 1/N gives

v=¢/N | o (53)
or _ c
. e



which is the same curve shape with the V and t axes interchanged.

A1l of these things suggest that an exponent of va1ue N is equally
likely to occur as an exponent of value 1/N, so the appropriate
“average" value of B would be an average over several decades of
N, giving each 8 value equal weight.,

A numerical table, with B calculated from (46), is shown as Table 1,
with the appropriate average value given as 0.884., This explains
Martin's choice of the effective time described earlier, as the
interval between 88% - amplitude points of the pulse.

TABLE 1

:Maigeswof B:Eqr Four Decades of N .

0.0 0.971692
0,03 .. .. 0.,945152 .-
00 0.906574

0.3 0,875859

1. 0,857143

3 0.85027

10 ©0.847645

30 | 0.846872

100 0.846599
cTotal . 7.9478]

. Average ;'1? ,mj.,I.a 88309 _”2"”

ATT of th1s d1scuss1on 1eads us, to replace the t1me dependence_

relation
S ‘:.T;.'J;‘E: e L g
TTCS U - T A )

appearing in (31), with a simpler "effective time" To which includes
the explicit dependence on pulse shape (the exponent N) in its verbal
definition. Then, the resulting breakdown equation will be that given
by Mart1n. equation (14).

-14-



We saw in (39) that
e
37

e =~§§%T -  _, o ;;  N (s6)

and from (41)'that § = 1/5. So, making the direct substitution (56)
in equation (31) leads o~~~ o 0

F (alTe)]/6 ~ks/® | s
/61 1/6 2 K '_ - _ :'-
Fgt/° T = K (58)

e ngﬂﬁg. :

Values of K- are used by Martin, (such as 23 for air), These
are related to the constant K used in deriving (16), by (58), Using -

(58), we havé a modified version of (16):

. ub ' :
dx o1V 1
K=t Tow © (59)

in which K“is Martin's constant. This is the exact form of the
streamer velocity relation given by Martin., It makes the correction
factor due to the "effective time" definition (39) explicit. This
factor is, by contrast, "hidden" in our equation (16). In most of
the following discussions, Martin's equation .(59) will be used.

ITI. Breakdown on a Fa]ling'wavefqnm

A1l of the preceding deals with gap breakdowns which occur on
‘the "leading edge", or rising portion, of the applied voltage waveform;
This is the usual case in point-plane switch design, and the results
~of section 2 will be useful in that regard. However, in the design
-of gaseous insulation systems for high voltage pulsers, it is important
to know how J.C, Martin's data equation (59) applies. To get an -
approximate, but useful, appreciation for this prob#ém we first ideal-
ize the situation as follows. : T

~15-



A. Assume the gaseous insulation system is weak at one or
more points, due to imperfections of various kinds, and that these
points (presumably located on high-voltage electrodes) do launch
streamers into the gas at the peak of the applied voltage pulse,

'B. Assume that the rise time of the applied pulse is much less
than its fall time, so that most of the streamer's path will be
_traversed on the falling portzon of the pu]se

“We could repeat a fa1r]y genera] ana]ys1s for this case, us1ng
a family of voltage pulses similar tn form to (24). However, in
most cases of interest the falling portion of the voltage pulse
Eas exponential shape, so this case w111 “be the only one considered
ere,

Onee again, we follow J.C. Martin and asSume that the streamer
velocity relation has the form (569). Then, if

-t/t
V(t) = Ve - | (60)

we want to know whether (59) will give the same breakdown law (14) as
- before, 1n th1s new . case,

Repeat1ng the 1ntegrat1on of (59) as before. us1ng the vo]tage
nulse (60) this time, we find

‘v .. B - -GTO/T
%i?%‘F_ ﬁe J (e

or

" (% [I-__e-ﬁTol‘t]) d] /6 < - L e
-where.To i$”thé point on the wavetail where the streamer bridges the

gap d.

Now how does the time dependence

TL_e_erolr] s (53)

-16-



_compare with the prior definition of effective time? If we use the
88% - width of_this_exponentia]'pulse;_we_fjnd;that ' T

. =Ta/1

0.88=¢e ©
or

Te.= -1 n(0.88) = 0,128t P
¥ |
Then for what closure time To does (63) equal (64)? We find
6T /L S B

or

To/f = 0,244 _ . (66)

Thus, if one uses the breakdown relation (14) for the case of a falling
~ exponential pulse, and uses Ty as defined by Martin, one will find
the spacing d and field F for which the gap (d) closes in about one-
~quarter time constant, This is an interesting set of F and d values,
but is an unsafe set, since it assures flashaver of the gap. In the
usual case, one wants to know how wide the gap must be made to avoid
flashover. To answer this question, let the closure time Ty become
“infinite in (62) and we have

- 1/6 1/6 | ' |
F(%) d = k- (67

Equation (67) gives the F and d values, for a given fall-time constant
T, such that the gap closes at t== , when no energy is left in the

system, Note here that the time one uses is not the usual 88% effective
~ time but is instead one-sixth of the time constant.

~17=.



Of course, this conglusion rests entirely on the question of
how well the streamer velocity relation (59) describes the true state
of affairs. One can conclude that Martin's breakdown relation (18),
streamer velocity relation (59) and definition of effective time T,
all form a self-consistent set of very useful tools, but that care
must be taken in using these tools to predict breakdown behavior
on a falling voltage waveform,

IV. Time Precision of Point-Plane Gaps

Martin's streamer velocity relation (59) will now be used to
exp1a1n the Tow-jitter perfonmance of point-plane spark gaps. Suppose
there is non-negligible jitter in the first event, namely launching
of the streamer into the gap, . The geometry produces a highly enhanced -
field, so this event eccurs early on a rising voltage waveform, but
statist1ca] delay in emission of the initiatory election in the avalanche
process can cause this event to occur within a band of time intervals,
measured over a Targe number of pulses. For an assumed "bandwidth" or
Mjitter" for this first event, what is the corresponding "bandwidth"
for the final event -- pamely closure of the gap?

To analyze this situation, let the rising voltage waveform be
that of (24).

V(t) = ath | (68)

In addition, let the streamer start1ng t1me be T, and the closure .
time be Tp. The sharp-pointed e]ectrode assures that T1 w111 be
considerably . smalter than Toe' - o _

Now we put this 1nformat1on 1nto (59) and 1nteqrate to re]ate T]
and Ty, . A _ _

| d T | |
5_(K’)6f xtax = uﬁl £ONgt | (69)

. 0 1

5 6 6N+1] 6 +'
R P ]
Then let
| K¢ 6d5 6N+1)

(__ ) 6( - = K (a new constant) (71)

u -

-8~



so.

e gy

Now, differentiate (72) with respect to Ty, and find

PA L o |
an ('rg) P o

If the jitter in T1 is AT], them an. approxlmatlon to the 31tter in
'Tz will be: .

L AT Ty . L
ATy a'r'AT1 L R (74)-
Expressing these as relative fractional changes, let

ATy o  =f.
the fractibnal change in Tz;_and

ATy

the change'in=Ti expressed. as a fraction of Toe :

- Then these combine to show

4 EG%) - (77)

and (77) is useful for examining the relat1ve jitter-reducing effects
of pe1nt-plane gaps.

-19-
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- Consider a typica]'examp1e: suppose a point-plane gap is designed

to close in Ty = 30 nS, and further suppese Ty varies from 0 to

20 nS, with a mean value of 10 nS, This situation is considerably
worse than any we are likely to encounter in practice. Then (77),
using the largest (not the mean) value of Ty, gives

f %J;(%)GN' s h e fv_'y;(78$\¢

For'a Yinear voltage puise (N=1), (78) shows

So the closure time jitter is less thanﬁten‘péhbéhf of the starting

time jitter, or 6.6 percent closure time jitter (the starting-time
was assumed to have the gross relative jitter of 66.7%).

In addition, a l-cos{wt) waveform is more closely-approximated.by.a .
parabola (N=2) than by the above linear function (N=1). And for this
case, we see that the closure time would have about 0.6 percent
Jitter, This kind of performance is often experienced with point-
plane gaps. S

Equation (78) also points out that it is important to have dv/dt as
large as possible {N>>1) at the time of closure, for the best jitter
performance, ' L o e et

We conclude this section with two short tables of J,.C. Martin's
data, taken from his equation (59} for atmospheric air. These,

combined with the graphical renderings in figure 3 and 4, should

prove useful in air gap and insulator design preblems.

‘Table II, figure 3, gives breakdown distance vs. mean electric
field (at breakdown) with the.usual (88%) “effective" time as.a. -
parameter,

Table 111, figure 4, gives the minimum safe holdoff distance

vs. mean electric field (at peak) with the pulse decay-time con-
stant (not the "effective" time) as’ parameter,

=20~



TABLE I1I

FIELD VS- DISTANCE AS A FUNCTION OF EFFECTIVE TIME
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FIGURE 3

‘Mean Field at Breakdown
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ThBLE 111

FIELD VS- DISTANCE AS A FUNCTION OF TIME CONSTANT
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FIGURE 4

Safe Distance to ‘Hold Off

Given Field (F) with Fall-
Time Constant as a'Parameter

Use for Falling Exponential
Waveforms - - -
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