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Abstract

Let C(R) denote the quantitative confidence justified by the available
data for the statement that the probability of success P. of a system is at
least R. Then as the system is improved by investment iR hardening technology,
or as our knowledge of the system is improved by investment in assessment
technology, the shape of a graph of C(R) will change. This note presents a
brief qualitative discussion of such changes.
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A qualitative discussion of the effect of investment «in various kinds of
technology on system C(R) (confidence in system reliability).
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~ The technology which we will discuss is of at least three kihds;'viz.,

A. Hardening technology

B. Reliability assessment technology
1. Prediction technology
2. Measurement technology

For any level of technology, we can always be 100% confident that the
robability of survival of a system is at least 0 (since the probab1l1ty of
inything is at least 0). And we always have 0% confidence that that: probability
s at least 1 (since no probability can exceed 1). Thus, for any level of
echnology the confidence C that the probab111ty is at Teast R can be represented
qualitatively) by a f1gure in the RC plane Tike this:

hd
0 1

>
R

Figure 1. Two points which must always
be on any funct1on C(R).

0 we know two points on this curve (viz., (0,1) and (1,0) ) regardless of the

evel of technology. The shape of the curve between these two points is what
he level of technology determines.

The remainder of this note is concerned with three topics:
General features which the C(R) curve always has.

What effects technology (of various kinds) has on the shape
of the C(R) curve.

c. What the system user would 1ike to do to the shape of the curve.
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a. General features which the C(R) curve always has.

‘The C(R) function is always monotone decreasing in the RC plane. Why is
this so? Well, let Ps denote the probability that the system will o
survive (or the probability that the electrical stress at a point inside the
aircraft will not exceed the threshold of failure at that point, or "whatever").
Now, the function C(R) is just the confidence warranted by the data that PS is
at least R (for reliability). And for two values of R, say R]ow"a"d‘RhigH’ the
confidence that PS is at least R]ow can be no less than the confidence that PS is
at least Rhigh (since the confidence in the latter is included in’thelconfidence

for the former, since Rhigh is at least R]ow)‘ Symbolically,
C(ps 2 R1dw) 2 C(P‘s 2 Rhigh)
Or, more tersely,
CRiow) 2 ClRyigp)

Hence confidence C(R) must always be a monotone'decréasing function of reliability R
(where "reliability R" here means a lower bound on PS).

Second, the C(R) plot is always "S-shaped". That is, quaiitatively it is
always as represented in this figure:

T

14

—D
0 1 R

Figure 2. Generic graph of C(R).

The reasons for this are technical, and arise from the statistics of the binomial
(or hypergeometric) distribution underlying this discussion (which in turn comes
from Pg» which can be thought of as a binomial parameter). So we won't go into
them in this note. The point that matters is that this S-curve has a point
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(R value) of steepest descent. And that point is the best guess of Py v (If we
were being technical we would say that the value of R at which C(R) has its
maximum absolute first derivative is the max1mum Tikelihood estimate of P s
lenoted by P . But we aren't, so we won't.)

o

b. Effect of technology on C(R).

In general a "sharp" assessment, i.e., one supported by a Tot of assessment

technology, meaning both a lot of good prediction theory and a lot of good
experimental measurement, will have a clearly defined "step" in the "S shape".
Qualitatively the effect is this: '
AN
C CA
14 14
; > —D
0 1 R 0 1 R

Not much assessment technology, A lot of assessment technology,
e.g., not much data. e.g., a lot of data.

Figure 3. Effect of improving assessment technology.

-

he result is that ﬁs is much more clearly defined in the right figure than in
he left. In the limit as, for example, the amount of data becomes infinite the

ot

urve becomes a perfect step, right at PS
C£>
Y >
0 P 1 R

Figure 4. Result of perfect assessment (technology).
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Superior hardening technology, in contrast, has a different effect on the
- C(R) curve, viz., it moves the step (however well or poorly defined) toward the
right. Pictorially the effect of improving hardening technology is this:

CA CA
14 1
' D —D
0 1 R 0 1 R
Poor hardening technology. Better hérdening technology.

ﬁigure 5. Effect of improving hardening technology.

¢. What we would Tike to do to tHe C(R) curve.

If the system which the C(R) curve describes our knowledge of is useful to
us, then we would 1ike to have reasonably high confidence that most copies of that
. system will work. For consider the difference between having acceptable confidence
in R = 80% vs having acceptable confidence in an R of only 50% . In the former
case we must be prepared for the possibility that up to 20% of the copies of the
system will not survive. So if we need 100 copies of the system "on target" we
will have to procure 125 copies in order to be reasonably confident of delivering
the 100 . But in the latter case, where R equals only 50% , we must be prepared
for the possibility that up to 50% of the copies will fail, and so will have to
procure 200 copies to be reasonably confident of putting at least 100 on target.
Thus in the former case we will have to buy 25% more than we actually need, but

in the latter case we will have to buy 100% more than we actually need.

Suppose the two kinds of technology together at present support a C(R)
urve Tike this:

0O

Ja
1+

D
0 1 R

Figure 6. Today's function C(R) for the system.
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It's a Tittle bit "washed out" (poor assessment technology) and it's point of
steepest descent isn't very far to the right (poor hardening technology). The
dot on the curve is at an acceptable value of R, say .8 , but the confidence
level there is rather low, say 15% . We might be prepared to do the 25%
over-buy required by the R = .8 , but we have very Tittle confidence (15%)
that this level of over-buy will put the required number of items (or more) on
target. So what do we do, within existing technology (all kinds), to get the
level of confidence up to an acceptable Tevel? As we move the dot to higher
levels of confidence on the Curve, it also moves to the left ... to values of R
requiring more over-buy. | '

What can improving technology do for us in this situation?

Well, improving hardening technology alone will move the steep point of
the S toward the right ... at some hardening expense. This will increase the

height of the curve at R = .8 (and at all other values of R as well).

And improving assessment technology alone will improve the "definition"
of the S . This might have the effect (perhaps at less expehse) of moving the
solid Tine in the following figure up to the dashed line:

0 i 1 R , .
acceptable level of R

Figure 7. Possible result of improving
assessment technology.

Some closing remarks.

As the foregoing shows, one can spend one's money on over-buy (i.e., on
redundancy), on hardening technology, and on assessment technology. And
investments in these three areas trade off against one another. So what one
really 'has is a resource allocation problem, which can be discussed in terms of
of the function C(R) and its graph.

It should be noted, though, that the last figure, showing what assessment
technology can do for us, doesn't have to come out so rosy after additional
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investment in assessment technology. The S has to become better defined (more

of a crisp step function) ... but this doesn't mean the resulting value at R = .8
will necessarily be higher than before the assessment technology advance. It
could turn out lower, as in this figure:

Qi-acceptab]e level of R

Figure 8. Another possible result of improving
assessment technology.

(In both cases the location of the step place, i.e., the point of steepest descent,
moved a little. But this wasn't because any hardening was gained or lost; it was
only because 5 is, after all, a random variable, so that a new assessment with or
without 1mproved assessment technology can be expected to yield a slightly
different value of P L)

Finally, an observatlon about what might constitute a "reasonable" level
of confidence. A thoroughgoing technical treatment would involve the costs of
Type I and Type II error vs the costs of reducing those errors (in probability,
or in expectation), and the statisticians have evolved many other ways of
‘gauging the quality of estimates of quantities such as P . But in this note
we make no pretense of offering a thoroughgoing treatment Instead we offer a
common sense rule of thumb. In general it doesn't make much sense to require
very high levels of confidence in Tow values of reliability ("I'm totally sure
it will do something, but I'm not sure what"), nor vice versa ("What it's going
to do is work, but I'm not very sure of that"). After all, these can be had,
approximately, from the "maximum ignorance" (i.e., before any data; uniform
prior) curve:
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Figure 9. "Maximum ignorance" confidence distribution.

Instead, a good rule of thumb is to have the confidence level approximately
comparable to the level of reliability at which the confidence is being evaluated.
Pictorially this rule of thumb amounts to seeking the intersection of two curves,
one being the C(R) dictated by the data (i.e., by the present level of the
technologies) and the other being C(R) = R (i.e., "the 45° Tine"):

Figure 10.

C(R) as determined from
C(R,)+ the data (i.e., by
0 S
X , present levels of

technologies)

A rule of thumb for picking a useful
single point on the C(R) curve.

s the indicated point at a level of R high enough so that we canAafforq to’buy
fraction (I-RO)/R0 more than we need? If not, then we need to buy some more

echnology.
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Appendix A

C(R) for some limiting cases.

It might be useful, for the sake of perspective, to consider the C(R)

curve in some limiting cases. To do this, let L denote the number of copies of

the system which were tested (assumed realistically) and let M denote the
number of those L which pass the test.

If all tested copies pass the test (i.e., M =L ), then we get:

]

1-

—>
0 1 R
Figure 11. Everything passes.

Observe that the value of R for steepest descent is indeed at ﬁs

= —T— = 1 .
Conversely, a purely concave (as seen from below) C(R) curve can arise only
from data in which everything passes.
If all tested copies fail the test (i.e., M =0 ), then we get:
7
1
—D
0 1 R
Figure 12. Everything fails.
Observe that the value of R for steepest descent is here at ﬁs = r = % =0
(assuming, of course, that 0 <L ).

And again, conversely, such a purely convex
(as seen from below) C(R) curve can arise only from data in which every tested
item fails the test.

In the limit as the sample size goes to infinity if virtually all items
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pass we get:

JAY
C
1
—>
0 1 R

Figure 13. Everything passes in a very large sample.

On the other hand as the sample size goes to infinity if virtually all
tested items fail we get:

1 —D
0 1 R

Figure 14. Everything fails in a very large sample.

Finally, as the sample size goes to infinity if we have a "mixed bag"
of passing and failing then we get:

JAY

C
1-

-J M
0 s M1 R
Ps = T

Figure 15. General C(R) for a very large sample.
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~ Appendix B

The effects of error and different interests on C(R).

A system "passes" a test if the threshold of failure of that system is
greater than the stress to which the system is subjected. But suppose that,
instead of being.able to test the system directly by applying the stress to it

and seeing whether it "breaks" or "smokes", we are in a position in which we

ust calculate or measure the system's threshold, the level of stress to

hich the system will be subjected, or both. In that case we don't actually
bserve the system in the stressful environment, and observe directly the response
f the system to that environment. Instead we do an algebraic comparison of the

stimated values of the threshold and stress, to see which is greater. We refer
o the difference threshold minus stress (e.g., in dB) as the margin of the
system in that environment. If the margin is positive then the threshold is
reater than the stress and the system would have survived, or passed, the test
if it had actually been administered. If the margin is negative then the
hreshold is less than the stress and the system would fail the test.

However, since we are using estimates of threshold and stress we have
nly an estimate of the margin which is their difference. Therefore, by dealing
ith a calculated value of the margin rather than actually performing the test
e incur the risk that the error in our estimate of the margin will occasionally
esult in our misclassifying a copy of the system as a "fail" (slightly negative
stimated margin) when if it were actually tested it would in fact pass (actual
margin in fact positive), or vice versa. '

In view of this misclassification risk, why would we ever substitute such
n algebraic comparison of estimates for an actual field test of the system?
asically because of cost; usually. For example, it may be very expensive to
pply the actual stress (say a nuclear war) to the system. So we may elect
nstead to simulate the stress at a less than realistic ("sub-threat") level,
nd then for our estimate of the real stress use an extrapolation (e.g., linear)
f our measurement of the coupled value.

But the risk is still there, so we might consider some of its cansequences.

[t is at this point that the different interests of various users of
eliability data can begin to make themselves felt. As a crude simple example
uppose that if we estimate the margin m to be m then the error in our estimates
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s such that we can be sure only that the true margin is somewhere between

M-e and mte (where e is a positive constant characteristic of our assessment
technology, e for error). (Why is this just a I'}c,r'ucyie simple example"? Because -
we are adopting a rectangular distribution for the error, and because we are
characterizing both the stress and the threshold as univariate. We are also
assuming that we know perfectly the value of the parameter e of the rectangular
distribution.) In such a situation one party might take the position that only
values of m below O-e = -e should be classified as "failures", since even
though negative any estimate above -e might be .in error by an amount great
enough so that the actual margin of the system was in fact positive (i.e., the

~ system would in fact pass if actually tested, despite a calculated value of m
which was slightly negative). A person with this viewpoint might feel that if
m= -.9¢e then it has simply not been shown conclusively that that copy of the
system would fail if it were actually tested, and so that copy of the system
should not be thrown in with the "failed" category. To put it more succinctly,
this person might feel that a copy of the system should be treated as passable
unless and until proven otherwise. This typically is the view of the "producer",
who would have the burden of proof rest on any who would accuse his product of
any inadequacy.

Conversely (or some might say perversely), the "consumer” might feel
the burden of proof should rest with the person who claims this copy of the
system is adequate, i.e., that a copy of the system is suépect until proven
sound. This person might therefore advocate classifying as "failed" any copy
of the system for which m came out less than +e , since even if positive a
margin estimate less than +e could be in error be enough so that the actual
system margin was negative (i.e., the system would fail if actuai]y tested
under realistic conditions, despite a calculated value of m which was somewhat
positive).

Another way to look at this is from the point of view of hypothesis
sting. Suppose the null hypothesis Ho is that "this copy of the system will
rk even if realistically stressed." Then the producer would like to reduce
producer's risk", i.e., the probability of Type I error, which is the probability

rejection of this hypothesis Hy when it is as a matter of fact actually true.
do this he classifies any "doubtful" copies as "passes". That is, if the
Tculated value of m for the margin m of a copy of the system is within e of
ro then that's good enough; the producer throws that copy into the "pass" bin.

E ct

N O —~ O
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The consumer, on the other hand, would like to reduce "consumer's risk", i.e.,
the probability of Type II error, which is the probability of accepting this
hypothesis Ho when it is in fact false. To do this he classifies any "doubtful"
copies of the system as "fails". That is, if the calculated value m for the
margin m of a copy of the system is within e of zero then he throws it into the
"fail" bin.

What are the consequences of these different attitudes toward how error
in the data should be handled? Well, suppose the estimated values m of the
margins m of various copies of the system are given by the x's in this figure:

T T T

X X X X X X XXX X
‘ >
- + ~
e 0 e A

Figure 16. Estimated values of margin, with error.

Then the second and third estimates from the left are close enough to zero so that

the fact that they are negative might be attributable entirely to error in the
margin estimation process. So the producer would be inclined to classify
these two copies of the system as "passes". As a result, in the notation of
Appendix A, above, the producer would count a sample size of L = 10 and
number of successes M =9 . In contrast the consumer would point out that the
fourth estimate from the left is close enough to zero so that the fact that it
is positive might be spurious, due only to error in the margin estimation
process. So he would be inclined to classify that one as a "fail", just to

be safe, and also all those to the left of it, a fortiori. So the consumer
would count a sample size of L = 10, just as the producer did, but he wou]d‘
want to say the number of successes was M =6 . ,

In a nutshell, the producer wants to define M as the number of possible
successes whenever there is possible error around, and the consumer wants to
define M as the number of guaranteed successes.

Therefore we always have

M <
consumer -~ Mproducer‘ :

so to speak.
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So what? ‘

Well, a careful consideration of the details provided in the references
of this note will show that for any R the function C(R) is monotone increasing
in M . That is, if we compare the C(R) curve which the producer will get by
classifying all “doubtfuls" (values of m within e of zero) as successes with
that which the consumer will get by classifying all doubtfuls as failures, we
will find that the producer's C(R) curve will always be as high as or higher
than the consumer's C(R) curve. Pictorially:

di

1 e(»producer

"~

consumer
NN
0 1 R

Figure 17. Comparing C(R) for
producer vs consumer.

Notice that the'pbints of maximum descent of these two curves are at,ﬁs equgl to

M. ‘ M _
—Eﬁ2§992£ and ,Egﬂ%!mgﬁ » respectively.

Finally, investment in assessment technology, in addition to seeking
better prediction models and larger sample sizes, can also encompass an'effbrt
to reduce the valué of e in the foregoing discussion (e.g., by better measurement
and data processing techniques). By thereby reducing the width of the "gray
area" between -e and +e in Figure 16, above, this can be expected to reduce the
number of estimates m (x's in Figure 16) which will fall in that area of -
uncertainty, and therefore reduce the number of copies of the system concerning
which there will be classification disagreement. Since this will bring
Mproducer and Mconsumer closer together (in distribution), the resu]t will be
to reduce the distance between the producer's C(R) and the consumer's C(R).
Thus another net effect of investment in assessment technology is to bring
together the two curves in Figure 17, above.
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