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ABSTRACT

A theory for predicting the performance and survivability of large

redundant path C3I networks under nuclear-stressed and ECM conditions is
developed. These communication systems (typified by the PACOM networks)
possess nearly a thousand nodes (message centers, relay terminals) and prop-
agation links ranging from VLF to SHF. The networks include numerous
critical message centers (e.g., command posts), with the required performance
between them generally being different. The performance of a network is
evaluated in terms of a set of functions ?;(x;ﬁ,t) which for the ath command
post pair is defined as the probability that the character error rate (CER)
is less than or equal to X, at time t following the onset of the threat. It
is shown that F&(X{E,t) is of the form:

F(x,5,t) = igz(x’t)sz(t) + ﬁ'é (Xt) G_(X,)P ()P (1) +

n n. m
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where the E‘s are functions of the products of the individual probabilities-
of-sgrvival, P;, for the nodes, and the G's are functions of the link parameters.
The P and G functions depend upon the entire connectivity between the command
post and hence incofporate a part of the redundancy in the system. Whereas the
nodes are modelled as binary random variables, the links have a continuous dis-

tribution in CER due to degradation of the propagation medium caused by nuclear
detonations. Numerical methods for computing F;(x;g,t) are presented.

Using the aforementioned equation for ?; we find the minimum cost to achieve
network survivability by first selecting the required CERs between command post
pairs, Xa, and the time to at which minimum performance is achieved. We sub-
sequently express the network cost function as: CNT=ZC1(P1)’ where Ci(Pi) is
the cost required to harden node i to probability of survival Pi, and N is the
numberqpf nodes. Minimizing CNT subject to the set of inequality constraints,
?;(XG,P,tO) Z.Ta = constant = required time availability for each « gives the
minimum cost for network survivability.
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PREFACE

This paper addresses the theory underlying GTE's development of
the Communications Network Assessment Simulator (CNAS) software which
originated under the DNA-sponsored APACHE program. The purpose of
APACHE was to evaluate the end-to-end (ETE) communications performance
between selected command posts (end-point-pairs) of the PACOM networks
under a postulated multi-burst high altitude nuclear scenario. The
PACOM assessment was performed using a combination of site-related ex-
perimental EMP data and theoretical propagation models. It required the
technical resources of a numbef of organizations with GTE and Boeing the
principal contractors, and other organizations such as SRI; RDA, CSC, and
BDM providing critical inputs to the data base in selected areas.

The basic information required for a network evaluation of the ETE
performance of pre-, trans-, and post-attack scenarios is:

1. The determination of the time-dependent statistical distribution
of the signal-to-noise ratio for the propagation paths (1links).

2. The determination of the time behavior of the probability-of-
survival, Ps’ and recovery time, 1, for the functional elements
(nodes) against the EMP pulse.

3. The development of a mathematical model for determining the ETE
performance from the aforementioned information.

4. The development of a computer system for implementing the math-
ematical model using an appropriate data base for identification
of the nodes and their respective values of PS and .

Pl
o e




oo

This paper is only concerned with the development of item 3, the
aforementioned mathematical model. No discussion of the data base or
its method of development is addressed in this paper. It is also shown in
this paper that it is theoretically possible to determine the minimum cost
necessary to harden a network for a specified performance level, provided
that one can determine the cost(s) required to harden the individual node(s)
against EMP to respective variable probability-of-survival levels.
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PARTIAL LIST OF SYMBOLS (::)

SYMBOL DEFINITION
Pi(t) Probability-of-Survival for node i
Ci(Pi) Cost Function for node i
X Character Error Rate (CER)
7 Set of values of P,
t Time, measured from onset of threat
F;(X,?;t) Performance Function, defined :z the probability that the

character error rate for the a
or equal to X at time t.

end-point-pair is less than

E(X;V;t) General notation for performance function
Psur End-to-end probability-of-survival, deduced as the limit of
the performance function when 1ink deterioration can be neglected
F*(X,t) Network Link Availability, defined as the 1limit of the perform-
ance function when all values of Pi are set equal to unity.
y Signal-To-Noise Ratio (SNR) in dB
uy Mean SNR
g Standard Deviation for signal
VA Bit Error Rate (BER)
Zi BER for 1link i
Xi CER for Tink i
?i(xi) Probability density function (pdf) for CER on Tlink i
?L(X) End-to-end 1ink pdf for a single path
FL(X) End-to-end distribution function for a single path
Ty Required time availability
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SYMBOL

DEFINITION

Required CER

Required time at which minimum performance is to be
achieved.

Event that node j is up

Event that path i occurs

Performance Function for hard 1link network

Event that jth node in the ith path is up
Event that the CER along path i is less than or equal to X.

Event that the resultant CER due to 1ink degradation along
path i is less than or equal to X.

CER for 1link j along path i



1.0 Introduction (::)

This investigation deals with the development of a theory and related
analytical techniques for predicting the performance and survivability of
large C3I systems, such as the PACOM networks, under nuclear-stressed con-
ditions. Characteristically, these networks include hundreds of nodes
(e.g., message centers, relay terminals, transmitters, etc.) and propagation
Tinks covering the frequency spectrum from VLF to SHF. 1In addition, they
possess numerous critical message centers (e.g., command posts) of varying

degrees of operational importance, with the required performance between
message centers generally being different.

It is desired to maintain the end-to-end performance (an entity which
we shall precisely define) of these large networks in a hostile environment.
Fig. 1-1 shows a pictorial representation of the situation envisioned. A
communication systems may be susceptible to nuclear threats, electromagnetic
countermeasures (jamming), commando strikes, etc. In this study we address
only the nuclear threat. (::)

As discussed in Section 2, a nuclear detonation may effect the system in
two ways. The EMP generated by the weapon can cause permanent or temporary
damage to the nodes (also called functional elements), while the nuclear-
produced atmospheric ionization can degrade the performance of the radio Tinks.
For example, the 22 PACOM networks contain more than 600 functional elements
(nodes) each of which has some degree of vulnerability to EMP.

Under GTE's portion of the APACHE program(l) an evaluation of the com-
munications capability of the PACOM networks in a specified multi-burst
nuclear laydown was rendered. 1In particular, the following considerations
were addressed:

10



FIG. 1-1 END-TO-END PERFORMANCE AND THREATS



"o The determination of the performance of
selected end-point-pairs in the networks
during the multi-burst scenario.

e The determination of the 1eve1iof EMP hardness
required at the individual nodes to achieve the
desired performance between specified command posts
throughout the network at the minimum cost.*

Although the theory and computer implementation for accomplishing the
aforementioned tasks was initially developed with the PACOM networks in
mind, the methodology can be, and has been, applied to other networks (e.g.,
NATO communication systems). Fig. 1-2 shows a generic network for which
this analysis is applicable. In this diagram there are four command posts
indicated by A, B, C, D. The circles are nodes, while the straight Tines
are links (propagation paths such as HF, cable, VLF, etc.). The object is
to satisfactorily communicate between any or all of the command posts.
Using end-point-pair A-B as an example we note that there are four possible
paths connecting them. As observed, portions of these paths involve some
common nodes and links. The theory developed shows how to rigorously compute
the performance between any and all end-point-pairs for redundant path
networks of the type just shown when the entire system is affected by multi-
burst nuclear detonations. In addition, the mathematical relationship between
performance and the minimum cost necessary to ensure a prescribed degree of
required capability is derived.

* The basic building blocks for determining the minimum cost required to
harden a system to some specified minimum performance level are the so-
called cost functions C.(P.). The entity C.(P.)is the cost necessary to
harden node i against EMp 1o probab11ity-oflsu}v1va1 level P., 1In this
analysis we do not use any specific form for the C, functiond. Reference
2 provides a discussion of minimum cost-to-harden {echniques using specific
cost functions for the functional elements of the PACOM networks.

12
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Up to this point we have Toosely used the word "performance" to (::)
describe the capability of a communications network. 1In Section 2 we use
a simple two-terminal radio network to present a meaningful physical in-
terpretation and corresponding mathematical definition for an entity de-
fined as the "performance function," F(Xgﬁ,t). This function is the
probability that the character error rate (CER) between a specified end-
point-pair is less than or equal to X at time t, following the onset of
the threat: P stands for the vector of all the probabilities-of-survival of

the nodes involved in the paths connecting the end-point-pair: Pi is the

probability-of-survival for node i.

The deduction of FYX{?,t) requires the use of several fundamental assump-
tions. These will now be stated:

e The nodes, as used in this analysis, are taken to be individual function-
al elements. Thus, the behavior of circuits which pass through the same
large facility or installation such as a building are analyzed in terms
of their corresponding functional elements (nodes) which define the
communications path.

e The susceptibility of a node, i, to the EMP threat is manifested in the (::)
probability-of-survival, P., for that node: P, is the probability
that node i will not go down. No assumption id made which 1imits the
nature of P.. On physical grounds one may assume that Pi will be time-
dependent, }ef1ecting the ability of the node to recover. A model for
P. which was used in the APACHE program is one in which restoration
wds assumed after a specified recovery time. However, this is not re-
quired in general.

e Statistical independence of the P.s for the nodes is assumed even though
it is recognized that this assump{ion may not always be true. Informa-
tion pertaining to the probability distribution for joint failure of
two or more nodes is not available. When, and if such information be-
comes available the theory can be modified.

e Statistical independence of the behavior of the propagation paths
(1inks) is assumed. Here, too, modification can be made if necessary.

14
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Section 3 provides a derivation of F(X,P,t) in the case of a serial
combination of nodes and links. This particular result is useful not only
in its own right, but also because it provides an important building block
in the analysis of redundant-path networks. 1In addition, the serial case
furnishes a good mathematical model for developing the concept of cost min-
imization: this is rendered in Section 4. 1In Section 5 we present the
general method for determining'?(X,?,t) in large networks involving redund-
ant paths, and discuss the associated cost-to-harden problem.

Based on certain mathematical properties of F(X;ﬁ,t) we develop a
rigorous definition of the probability-of-survival, Psur’ for an end-point-
pair. It is shown in Section 6 that Psur is equal to the performance
function in the Timit when 1ink effects can be neglected. In addition, it is
possible to define a function called the network Tink availability, F*(X,t)
which is observed to be the T1imit of the performance function when all the
nodes involved in the connectivity between the end-point-pair have probabil-
ity-of-survival equal to unity.

In a large network the evaluation of F(X,?,t) is seen to require numerical
integration techniques. The essential problem is the computation of integrals
involving several variables. It is well known that Monte-Carlo integration
techniques are appropriate in such cases. For orientation purposes, we
present a brief summary of the general concepts of this technique in Section 7
as it applies to our problem. It is beyond the intent of this paper to go into
the refinements of the so-called “crude" Monte-Carlo numerical integration
method. This will be presented in a subsequent publication. Concluding
remarks are rendered in Section 8.

15




2.0 Physical Interprétation Of Performance in Nuclear-Stressed
Environment: Definition Of Performance Function
—

The purpose ofﬁthis section is to provide a physical basis for (::)
establishing ?(X;E,t) as a suitable measure of network performance in
nuclear-stressed environments. This is accomplished by developing the
natural evolution of F(X,P,t) from the ambient to the nuclear case in a
simple two-terminal communications network. The generalization to large
C3I networks is given in Section 5.

Figure (2-la) shows a model of a two-terminal communication network,
namely, one involving a single transmitter and receiver, with a single link
(propagating medium) connecting them. Under ambient conditions the prop-
agation medium may vary due to natural-occurring changes in the environment
(e.g., rain, variations in the ionosphere, etc.), while the rms atmospheric
noise is also variable. Because of the stochastic nature of the SNR it is
necessary to deal with its probability distribution.

The probability distribution function, pdf, for the SNR in the ambient
case is determined from a finite number, n, of experimental observations.

If we denote {::)

y = SNR (in dB), (2.1)
then the distribution function for y is estimated as(3):

Number of experiments in which measured
G (y) = SNR is less than or equal to y (2.2a)
n

Total number of experiments = n

Suppose that ﬁn(y) has been measured in a finite number, n, of experi-
ments. What is actually desired is the true distribution function, which is
defined as:

6(y) 6, () (2.2b)

1im
N
From a practical point of view we cannot realistically determine G(y) since

n <<o . However, we can hypothesize that G(y), for example, is normal
(i.e. Gaussian). In principle we could then use Gn(y) to conduct a statistical (::)

16
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test of this hypothesis. Of course there is some possibility that the

hypothesis is false even if the test is passed. The probability that

the hypothesis will pass a test even if it is false is called B. The B

of a test of a normal hypothesis for an(y) against all "hazardous" alterna- (::)
tive distributional hypotheses (e.g., the Cauchy distribution) is not

known to this author at present.

We can nevertheless use the normal hypothesis as an example to show
how probability and cost minimization calculations can be done if G(y) is
known. In this case we have:

y
G[y] = fg(y‘)dy’ (2.3)

w00

with g(y) being the normal pdf: g(y) is given by

where : (::)

mean value of y

=
1]

Y

2 _ . 2 2 . ind d )
o” = variance = o + o (assuming independence
o, = standard deviation for rms noise

Q
n

standard deviation for signal Tevel

The values of Mys Op and o_ are estimated by ﬁy, 8n, and 65 using a

finite number of experiments. In this analysis we do not address the .
question regarding the confidence we have in the values of uy, O
and Gg.  and

For airborne platforms an additional uncertainty in the SNR arises from
random variations in the antenna direction. In this case the variance is
given by:

O2 - Gﬁ + OE + 02 (assuming independence) (2.5) (::)

where 9, is the standard deviation for the antenna fluctuation. Here again,

an estimate, O 1is used in Tieu of the true value, 0.

18



Assuming a particular modulation scheme provides the relationship
between the bit error rate, BER = Z, and SNR. We have the equation:

Z=T(y) (2.6a)

and the inverse relationship
y=tY2) =0ty (2.6b)

where T is the modulation function. Figure (2-2) shows examples of the re-
Tationship between bit error rates, and SNRs for selected modulation schemes.
The pdf for the BER, denoted as fl(Z), is determined from the law of trans-
formation(3) of pdfs:

f, (2) dZ = g(yddy (2.7)

£,(2) = gly = 0(2))(59) (2.8)

The range of Z is from O to 0.5, while the probability that the BER is less
than or equal to Z is given by:

VA
Fo(2) =f0f2(2')d2' (2.9)

For the example of Fig. (2.1a) it is apparent that FQ(Z) provides a
usable measure of system performance. By virtue of the fundamental origin of
P[y], and the relationship between Z and y, it follows that FQ(Z) can be in-
terpreted as the time availability. Physically, F,(Z) is the fraction of time
that the BER will be less than or equal to Z.

19
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Within the foregoing context one can define and evaluate a quantity,
Z*, which is the BER corresponding to a specified time availability H.
The former is determined from the equation

H = F,(2*) (2.10)

In functional form Eq. (2.10) can be inverted to yield the relationship

I* = F;l(H) = y(H) (2.11)

One may carry the formalism one step further to the point of deter-
mining the pdf for the character error rate, CER. This quantity is perhaps
more useful to the communications engineer than the BER. We can represent the
functional relationship between CER and BER by the equation

A

CER = X = G(Z) = function of BER (2.12)

For example, if we assume 8-bit ASC II characters we have the result
X = 1- (1- 2)8= 6(2) (2.13)
Although the upper Timit of the BER is 0.5, the upper Timit of X is near
unity, as can be seen by substituting Z = 0.5 in Eq. (2.13). For Z = 0.5
Eq. (2.13) yields a value of Xmax =0.996. For all practical purposes we can

approximate this upper 1imit as unity.

The pdf for the CER, denoted as ?;(X) is deduced from f(Z) through the
relationship:

L (X)dX = f,(2)dz (2.14)

21




Using Eq. (2.13) we have (for 8-bit ASCII characters):
z=1-(1-xV8 | (2.15)

which then gives:

> _ 1 _ 178
fz(X) *(g";j-;377é)f2(2 = 1- (1-x) ) (2.16)

(

The probability that the CER is Tess than or equal to X is given by:
X
FL00 = [ F, (x)dx (2.17)
0

Let us now extend the previously developed ideas to the nuclear-stressed
case. Consider initially the situation where only the propagating medium is
affected by the detonation. Using nuclear weapons phenomenology computér pro-
grams such as WEPH VI in conjunction with propagation programs such as WEDCOM
(VLF/LF), NUCOM (HF), WESCOM (UHF/SHF SATCOM), etc., one determines the time
behavior of the median SNR for a particular link. The median SNR so deter-
mined is assumed to be deterministic.* As such,the pdf for the SNR is still
given by Eq. (2.4) with py(t) now determined from the solution of the nuclear

propagation codes. Figure 2-3 shows the gualitative behavior of the median
CERs for a broad spectrum of radio links. The median BER is determined
from Eq. (2.6a), namely Zm =P(ym), with the median CER then given by:

X = 6(Z,).

From a theoretical viewpoint, there is no change in the interpretation of

FQ(Z) or F;(X) vis-a-vis the ambient case. Thus, the predicted probability

that a particular 1ink will support a BER/CER less than certain specified
amounts is still given by either Eq. (2.9) or Eq. (2.17) respectively.

* Attempts(4’5) have been made to account for uncertainties in the prediction
of the median-generated SNR. Investigations of this type are still in
progress.

22
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Using Fig. (2-1b) we now address the next level of complication,
that being the case where the nuclear detonation affects both the 1ink
and the transmitter/receiver. Based on a combination of experimental
data and theoretical analysis it is assumed that nodes such as a trans-
mitter and receiver have a non-deterministic response to EMP. That is,
one assigns a probability-of-survival for the nodes. For example, in
the model of Fig. (2-1b) one may define P, and Pr to be the probabilities-
of-survival for the transmitter and receiver, respectively.

If we once again pose the question - "what is the probability that the
end-to-end (transmitter-to-receiver) CER is less than X?," we must now
account for the possibility that either or both the transmitter and receiver
will be out of commission. The CER distribution function,‘F(X,t) in this
case can be written in the following form:

F(X,t) = (Pr(t)PR(1))F, (X,t) + U(1-X) (1-P(t)Po(t)) (2.18)

where U is the step function. The rationale for the above construct will
now be explained.

The first term in Eq. (2.18), which also shows the explicit time de-
pendence of PT and PR’ is the only physically interesting one. The factor

PTPR takes into account the obvious physical requirement that in order to

receive any message at all, both transmitter and receiver must be operating.
The interpretation of ?L(X,t) is the same as before. However, the first term
alone is not sufficient to define a proper probability distribution function
because it does not satisfy the normalization condition, which requires that:

1 .
f F(x,t)dx = 1 (2.19)
0
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Since F&(X,t) is a properly normalized distribution function it
follows that

(A
—

f P.PeF, (X,t)dx = PPy (2.20)

for nuclear-stressed conditions. In order to render ?(X,t) a proper
distribution function, it is necessary to make a statement about the CER when
the transmitter/receiver are down. We assume the failure of either or both
of these nodes produces a CER of unity. This appears quite reasonable con-
sidering the discussion surrounding the upper limit of X as deduced from

Eq. (2.13). Since no discernible signal is received when the transmitter/re-
ceiver malfunctions it follows that Z = 1/2 in this case. Inserting this
value into Eq. (2.13) gives Xpax = 0.996 = 1. From a mathematical viewpoint
this end-point singularity is taken into account by including a step function
term at the value X = 1. Figure 2-4 shows a representative distribution
function corresponding to Eq. (2.18).

Analogous to Eq. (2.18) the distribution function for the BER is given
by:
1

F(Z,t) = PP F (Z,t) + U(= -

LU 5 Z)(1-P_P) (2.21)

TR
The interpretation of F(Z,t) parallels that for F(x,t).

For values of X less than unity, which is always the case of physical
interest, F(X,t) is given by:

F(X,t) = PTPRFz(X’t) (2.22)

25
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BY CONVENTION ONLY, F(X,t) can be interpreted as time availability.

In the absence of nodal considerations (PT =1, PR = 1) one may more real-
istically interpret F(X,t) as time availability if we assume that the median
SNR is completely deterministic (cf. previous discussion). In this case

one operates in the realm of predicted time availability vis-a-vis that which
is based on experimental observations.

If F(X,t) is the fraction of time that the CER is less than X, then

1 - F(X,t) = fraction of time that the CER is greater (2.23)
than X |

For communication systems design it is frequently desirable to know the CER,
X*, which is exceeded a certain percentage, r, of the time. This is
determined from the equation

1-Flxs,t) = gk = , | (2.24)

Figure 2-5 shows the time behavior of X* for three values of r for a par-
ticular 1ink evaluated in GTE's APACHE study.

Inserting Eq. (2.22) into Eq. (2.24) gives

~

1 - PPF, (X,t) = f (2.25)

or equivalently
- 1-f :
F (X*,t) = (c=+) | (2.26)

PTPR
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Since the largest value of ?Q(X,t) is unity, Eq. (2.26) is observed to
require

f.2 1- PPy (2.27)

Physically, Eq. (2.27) shows that for CERs less than unity there is a limit
to the transmission capability of the system because of nodal failure.
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3.0 Performance Of A Network Involving A Serial
Combination Of Links And Nodes*

Figure (3-1la) shows a physical model of a communications system
involving a serial combination of nodes and links, while Fig. (3-1b) shows
its mathematical representation. This configuration is typical of the class
of networks consisting of a series of "M" nodes and "M-1" links (cf. Fig.
3-2). The analyses of such networks are important not only in their own
right but because they form the building blocks of larger, more complex net-
works such as the one shown in Fig. (1-1).

Let us consider a network consisting of M nodes and (M-1) links, and
let each 1ink have the capability of introducing a character error into the
system. We define

X; = CER for Tink i(1 <i <M - 1) (a)

?i(Xi)dX. = differential probability that (b) (3.1)
the CER for link i lies in the
range X; to X; + dX;

The foregoing definition for Fi(Xi) is applicable for both the benign and
nuclear-stressed cases, the only difference being in the choice of the model
used for the median SNR (cf. previous discussion).

Initially, let us assume that the nodes are operating perfectly; and
proceed to compute the CER at the terminating node (e.g., node 6 in Fig.
3-1). If X; is the probability of a character error for link i then (1 -X5)
is the probability of end-to-end error-free transmission, with X being the
terminating CER. We assume that the terminal end-to-end error-free probabil-
jty is the product of the individual ones. Thus, for a path consisting of
(M-1) Tinks in series we have:

* An earlier version of this model was formulated in Reference 6.
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M-1
1-X= 1 (1-X) (3.2)
=1

Equation (3.2) is based on the neglect of character error correction.
In this respect the model is conservative as it will predict a Tower bound
on end-to-end network performance. A similar equation can be written for
the end-to-end BER, namely,

M-1

1-7= 1 (1-1,) (3.3)
=1

(7,8)

which is applicable in the range of small Zi' The reason that Eq. (3.2) is

not necessarily restricted to small values of Xi’ whereas Eq. (3.3) requires
small values of Zi can be traced to the intrinsic relationship between BER
and CER, as for example given by Eq. (2.13). That is, the probability for a
random correction of a character is much less than that for a bit.

For the remainder of this section we shall be concerned with the de-
termination of ?L(X), the pdf for the end-to-end CER. To the extent that
Eq. (3.3) is applicable, the methodology can be applied to compute fL(Z), the
end-to-end pdf for BER.

Since each X; is a random variable so is the end-to-end value, X. The
pdf for X is determined as follows. We first take the natural logarithm of
both sides of Eq. (3.2). There results:

M-1

en(l - X) = = an(l - Xi) (3.4)
=1
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If we now define:
Q; = 2n(l - X,) | (3.5)

then Eq. (3.4) becomes:
M-1

Q= z
i=1

J (3.6)

The pdf for Qi is determined from the transformation law:
f,(0;)de; = F,(X,)dx, (3.7)

Using Eq. (3.5) we have:

-Q.

X;=1-e 1 (a)

d, 1 Q; |

x, - Ty 7 e (b) (3.8)

Substituting Eq. (3.8) into Eq. (3.7) gives:

£.(0.) = F.(X: =1 -e e (3.9)

The computation of the pdf for Q, %(Q), follows from straightforward
application of the laws of probability(3 . Using a two-1ink path gives

Q=0 +0Q, (3.10)
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The pdf for Q in this case is given by the convolution 1ntegra1(3)

q
)= [ 10 - 0)Fy(0)de | (3.11)
0

The foregoing integral can be evaluated in terms of the pdfs for the CERS
fl, ?2 using the following technique. From the transformation law for pdfs
we can write:

f(Q)dQ (X)dX (a)

;Z(Q’)do’ = F,(x")dx* (b) (3.12)
where

Q" = -2n(l - X°) (a)

Q = -en(l - X) (b) (3.13)

Using Eq. (3.13b) then gives:
f(Q) = (1 - 0F (), (3.14)

where ?L(X) is yet to be evaluated.
Finally, we introduce the variable
*=Q-Q (3.15)
and consider the pdf defined by the relationship

F(e)de = ;1(0*)dQ* (3.16)
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where

Q* = -2n(1 - 6)

(3.17)

?l(e) is the pdf for the CER of 1link 1 expressed as a function of the vari-

able, 6.

There results

fl(o*) = (1 - e)fl(e)

Since
6=1-e
we obtain
. = 1. (@-07) ()
= 1'-e-QeQ, (b)
Making the substitutions
e =1 x (a)
= (L) (b)

1-X

then yields

36

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)



O

and
(1 ~8) = Ll_:_&l_ (3.23)
(1 -Xx)
Substituting Eqs. (3.14) and (3.18) into Eq. (3.11) then
gives:
X
~ _ 1 -X) %, X = X% fyoyavs (3.24)
(1 - \)F (X) = ( F £ (X-)dx
X T TR0
0

Since (1 - X) can be brought outside the integral sign we obtain the final
result

X

% x) = 1 3% X=Xy % (yeyaxe

Foo=f (=) B &0 Frxnae (3.25)
0

which is valid in the range X < 1. In functional form we can write

fL(X) = F

t

o f

> (3.26)

1

A

where the convolution sign, @, stands for the irregular convolution integra-

tion given by Eq. (3.25).

If we now return'to the general expression of Eq. (3.6) it readily
follows that for (M-1) links in series we have:

F =7 oF 0...F 3,27
fL(X) fl @ f2 [Y) fM-l ( )

In the ambient environment the CERs are always much less than unity

(except in extremely rare cases).
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which permits X* to be neglected in comparison to unity in the convolution
integral. Thus, for example, Eq. (3.25) becomes

?L(x) = Jf ?l(x - X, (x)dx (3.28)

which 1is recognized as the standard convolution integral. Equation (3.28)
could have been deduced by noting that in the small Xi range we have:

Q; = -an(l - X;) = X, (3.29)

For a nuclear-stressed environment the CERs may indeed become large
(cf. Fig. 2-3) so that the irregular convolution integral as given by
Eq. (3.25) may be more appropriate.

The brobab11ity that the end-to-end CER is less than X is the path dis-
tribution function

Jf FLOeyax (3.30)

where ?L(X‘) is given by Eq. (3.27). Since each of the ?1(X1)s is normalized
it is easy to show:

‘/' F(x)dxs =1 | (3.31)

It is also clear that if a single node in a series of nodes*is down
then the communication path is destroyed. Following the same reasoning as
for the simple transmitter/receiver model of Section 2, the end-to-end pdf
for the network shown in Fig. 3-2 is given by (cf. Eq. 2.18):

* The reader should recall that a node as used in th1s report is
an individual functional element.

38

O

O



M M

F(X,P,t) = (nl PL(ENF (X,t) + U(1 - X)(1 - 1 P.(t)) (3.32)
i= i=1
= P*?L(x,;) + U(1 - X)(1 - P¥) (3.33)
where
M
P*¥ = 1 Pi(t), (3.34)
i-1

and P stands for the set of all Pis. For subsequent usage we have taken the

liberty of explicitly showing the dependence of the performance function,
F, on'F.

Analogous to the discussion surrounding Eqs. (2.21) and (2.22) we note
that for the physically-interesting regime, X < 1, the first term in Eq.

(3.33) is the only useful part. Thus, for all practical purposes F(X,ﬁlt)
is given by:

F(X,-F?,t) = P*FL(X,t) (3.35)

Examination of Eq. (3.35) Teads to the following conclusion:

A SERIES OF NODES AND LINKS CAN BE REPRESENTED BY A SINGLE
EQUIVALENT NODE WHOSE PROBABILITY OF SURVIVAL IS THE PRODUCT
OF THE INDIVIDUAL PROBABILITIES OF SURVIVAL; AND A SINGLE
LINK WHOSE PDF IS DETERMINED BY A SERIES OF CONVOLUTION
INTEGRALS INVOLVING THE PDFs FOR THE INDIVIDUAL LINKS.
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In order to use the foregoing result in a network involving branch
points, it is necessary to develop an appropriate geometric interpretation
of the equivalence statement. For example, even in the serial network case (::)
we must still retain the end-points if the model is to look realistic.
This is accomplished by reducing Fig. 3-2 to the equivalent network of
Fig. 3-3. For cosmetic purposes, an arrangement is used in which the in-
terior nodes - 2,3,...,M-1 are combined to yield an equivalent interior node
whose probability-of-survival is given by

M-1

pr*= 7 P, (3.36
j=2 ! | )

The interior node so deduced is called a "Virtual Node."

Since an interior node must have an input and output link, it is con-
venient to artificially construct one of the links on either side of the
node to be a "perfect 1link," while the other is the "Equivalent Link."* This
is shown in Fig. 3-3. Using this rule the end-to-end performance of the
equivalent network of Fig. 3-3 is the same as that of Fig. 3-2.

The use of virtual nodes and equivalent 1inks is found to provide con- (::)
siderable simplification in the analysis of the network by reducing the number
of variables (cf. Section 5). Figure 3-4 shows the reduction of a network to
a simpler form using virtual nodes and equivalent 1inks. It is to be noticed
in this network simplification that the branch points (labeled bl-b8) remain
unaffected.

It is also instructive at this point to examine the mathematical proper-
ties of F(X;ﬁ;t) in the regime where 1ink degradation effects can be neglect-
ed. We, define such cases as "hard-1ink" models. Although the forthcoming
discussion of the hard-link case is cast within the framework of the serial
node and Tink model, the concept is of general applicability since many actual
networks (particularly those involving cables) exhibit such behavior.

*An alternate way of treating the 1inks would be to retain the first 1ink

and group the remaining M-2 links around the equivalent node. Although

this would avoid the use of a physically unrealizable perfect 1ink, one

would still be left the computational requirement of convolving link #1

with the remaining ones. It is mathematically convenient to use the (::)
perfect 1ink technique.
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The statement that 1ink degradation effects are negligible can be
approached with varying degrees of rigor. On one extreme we could re-
quire that each pdf for a link be of the form

?1(X) = 5(X) = delta function at X (3.37)

Using Eq. (3.38) in Eq. (3.28) then gives

LX) = s(X) (3.38)
and

FL(X) = U(X) (3.39)
Thus, for any value of X > O we have ?L(X) =1 and

F(X,P,t) = P | (3.40)

In practice it is not necessary to use the severe approximation of Eq.
(3.37) in order to construct a hard-link approximation. Instead, we simply
assume that there exists some value X = Xu’ where Xu satisfies the condition

0<X, <1, (3.41)

such that

~

FL(Xu,t) =1 -¢e:ex 0 (e > 0) (3.42)

Indeed, the upper limit of Xu can be as close to (but always less than) unity
so long as Eq. (3.42) applies.
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4,0 Concept Of Cost Minimization: Application For Single Path

The purpose of this section is to introduce the concept of cost
minimization and show its intrinsic relationship to the measure of per-
formance. For orientation purposes, this is explicitly demonstrated for
the relatively simple model of the serial chain of nodes and links (a
single path). Indeed, for this case, the analytic technique of Lagrange
Mu1tip1iers(9) can be used. As indicated in Section 5, the methodology
for determining the minimum cost-to-harden a network involving multiple

end-point-pairs requires the numerical techniques of non-linear optimiza-
tion(lo’ll).

Let us initially consider the communication model of Fig. 2-1. As
shown in Eq. (2.22) the performance of this network is given by:

F(X,t) = PL(t)PL(V)F, (X,t), (4.1)

where it is assumed that the probabilities Pr and Pp are time dependent. An
example of such behavior is shown in Fig, 4-1. Initially we have:

Pp =1 (a)

Pp =1 (b) (4.2)

which means that prior to the detonations, eVerything is assumed to be
working perfectly. For illustrative purposes, the transmitter/receiver
are assumed to be far enough so that each is affected by a different
nuclear weapon. Thus, for example, PT drops from unity to 0.8 at time tl,
the detonation time for the first weapon, while PR drops from 1 to 0.5 at

nuclear detonation time t;. If both nodes are influenced by the same event,
t. = t,. A concept introduced into the survivability picture is that nodes

1 2

*Based on experimental observations, it is noted (cf. Ref 12) that some nodes
can recover within a certain time interval, 1. The length of Thgepends upon
the particular node and the type of degradation caused by eMp(12).  In the
event that the node never recovers, we set t = «.
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can recover; Ty, Tp are the recovery times for the transmitter and receiver
respectively. Combining the results from Figs. 4-la, 4-2b gives the result
shown in Fig. (4-1c).

Suppose, from an operational viewpoint we require that at time t,
following the onset of detonations, a certain time availability, Ta, with
a maximum allowable CER given by X, (we naturally assume Xg < 1). Using
Eq. (4.1) then yields

~

F(Xgoty) = Prlt )Pplt )F (X ,t ) Ty, (4.3)
)

or equivalently

.
Pt Pp(ty)y —a (4.4)

If the value (Ta/Fz(Xo’to)) is the larger than P;Pp it means that the

performance requirements cannot be met for the nodal-behavior shown in
Fig. 4-1. On the other hand it is deemed possible - given enough financial
resources - to increase the value PT(tO)PR(tO) so that the equality condition

is met. Of course, should the value (Ta/FQ
no solution to Eq. (4.4) is possible.

(Xo,to)) be greater than unity,

Defining

Ta
FO T rem— ’ (4.5)
Fl(xo’to)

we seek to find the minimum cost which will satisfy the condition

PrPp =T, s (4.6)
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with the equality sign being appropriate(g). We assume that the transmitter
and receiver are each characterized by cost functions CT(PT)’ CR(PR), which
are the costs required to harden the respective facilities against EMP to

probability-of-survival levels PT’ PR respectively.*

The total hardening cost is given by:
Cy = Cr(Pp) + C(Pp) (4.7)
For the simple two-node case under consideration it is easy to determine

the minimum value of CN’ and the corresponding values of PT and PR at the
minimum which will satisfy Eq. (4.6). Substituting for P, from Eq. (4.6) in

T
Eq. (4.7) gives:
To
CN = CT("EE) + CR(PR) (4.8)
Solving the equation
dCN

* The deveTlopment of the cost functions is a rather complex process involving
detailed knowledge of the equipment in the facility, and the hardening know-(
how. SRI has performed such an evaluation for DNA under the APACHE program,
although refinement of their results (toward Tower costs) seems appropriate.
For the purposes of this analysis it suffices to say that one can ascribe a
cost function to any node in the system, Since it obviously costs more money
to harden a node to a higher probability-of-survival level, the Cs are mono-
tonically increasing functions of the Ps; that is;

for all nodes.

47

13)



yields the value of P'R at the minimum cost, PR m'in' The corresponding value . ,
A ! ,

of PT is given by: ' :

' T

= 0 )
R,min

while the minimum cost is given by:
CN,min = CT(PT,min)'FCR(PR,min) (4.11)

It is also possible to analytically determine the minimum cost for
hardening a serial chain of nodes and links, consistent with maintaining a
certain level of performance. The problem is of interest for orientation
purposes - as it demonstrates the transition between the two-node case and
that for many variables; and also shows how to develop an equivalent cost
function for the virtual node. This Tlatter concept is useful in analyzing
the general network problem. .

Consider the network of Fig. 3-2, whose end-to-end pdf for the CER

is given by Eq. (3.32). It is desired to find the total minimum cost to
harden this network subject to the constraint:

(4.12)

where the implicit dependence on time has been suppressed. The total cost is
given by: | .

C.(P.) . ) (4.13)
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with the st being monotonically increasing functions of the Ps. In this

case, the equality sign of Eq. (4.12) applies. Taking the logarithm of
this equation gives:

M
I anP, = gng (4.14
=1 )
where
Ta
B= = (4.15)
FL(XO)

Following the method of Lagrange Multipliers we introduce the function

M

@(Pl,Pz,....PM,B) = jzl 2n Pj - 2ng =10 (4.16)

The auxiliary function which now is to be minimized is(g):

C Cy-Ae (4.17)

where

>
1]

Lagrange Multiplier (4.18)

If E is to be a minimum then we require that the first variation of C with
respect to all the Pj's vanishes. We have:

.M
6= 3 %g_ P, = 0 (4.19)
J=1 9%
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Using Eq. (4.17) yields: (::)

M 3C
N 90
r -2 ) 8P, =0 (4.20)
.o . . J :
j=1 BPJ BPJ
where
R | (4.21)
oP. aP .
J J
b 1 ,
EY- i (4.22)
J J ;

Inserting Eqs. (4.21) and (4.22) into Eq. (4.20) gives:

aC,

(P, —L - x) 6P =0 (4.23)
1 J BPJ.

M=

J

The solution for Eq. (4.23) requires that the coefficient for each Pj
vanish, We thus have:

i=1,2,...M P _Jd =1 ' (4.24)

which represent M equations. Combining these M equations with the constraint
equation
M

@(PI,PZ,...PM,B) = jzl gnP - en g =0 (4.25)

gives (M + 1) equations in the (M + 1) variables P1sPss Pys A The procedure
for solving for Pj is straightforward. For example, Cj(Pj) is a function
only of Pj' Thus, each solution of Eq. (4.24) is of the form:

Py = vy(0) (4.26) O



Alternatively,
anP, = an wj(x) (4.27)

Inserting Eq. (4.27) into Eq. (4.25) gives:

2n wj(x) = on B (4.28)

o=
-

J

Since the wj's are known, Eq. (4.28) is a solution for A in terms of 8.
Let us denote the solution of Eq. (4.28) by the relationship:

A = a*(B) (4.29)

Equation (4.29) gives the value of the Lagrange Multiplier at the minimum
total cost. The corresponding values of Pj at this minimum are determined
from Eq. (4.26). We have:

*
Pj = wj(k*) (4.30)

and the minimum cost for hardening the system subject to the constraint of

H0 and XO is given by:

=

= minimum cost = 1 C.(P%) (4.31)

CN,min if1 5%

An academic example of this technique applied to simple analytic form for
Cj(Pj) is rendered in Appendix A.

In retrospect what has actually been accomplished is to find the min-
jmum cost for hardening a chain of nodes whose Pjs satisfy the condition

M

T P =8, (4.32)
=1
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where g8 is an arbitrary number between 0 and 1. Indeed, by examining
Eqs. (4.29) - (4.31) we note that we have been able to express the

minimum cost CN min 25 @ function of the variable g. That is,
]

CN,m'in = CN,min(B) (4.33)

Physically, B8 is the resulting probability-of-survival for the serial
chain of M nodes, and can assume any value between 0 and 1. It therefore
follows that the virtual node of Fig. 3-3 can be described by an equivalent
cost function, Cmin(P**)’ which is the minimum cost required to harden the
chain of nodes i = 2 to i = M-1 to net probability-of-survival, P**, An
example of this is presented in Reference 2.
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5.0 Performance And Cost-To-Harden Large Networks
Involving Redundant Paths

In the previous sections we established the conceptual basis for relating
the performance and cost-to-harden in a single-path network; that is, one
which did not involve redundant paths. We now show how these ideas can be
extended to the general network case. Here again, we choose to proceed from
the simple to the more complex. With this in mind we first consider the so-
called "hard-Tink" model in Section 5.1. This case is one in which we neglect
degradation of the propagation links. Situations 1like this may occur, for
example, in networks where the nodes are connected by hardened cable systems,
or any other Tlinks which are not affected by nuclear detonations. Subsequently,
in Section 5.2 we determine F(X{F,t) for networks involving both nodal sus-
ceptability and 1links whose performance can be degraded by nuclear detonations.

5.1 Hard-Link Networks

In Section 3 we introduced the concept of a hard-1ink network; namely one
for which Tink degradation effects are negligible. For this type of network
we showed that for a serial chain of nodes, the performance function, as given
by Eq. (3.40), is only a function of the Pis. We now consider the deduction of F
for all networks in which the Pis alone determine the communications capability
of the system. The determination of the performance function and cost-to-
harden for this class of networks is not only important in its own right, but
in addition provides insight into the theoretical development of the general
case considered in Section 5.2.

5.1.1 Theoretical Formulation Of Performance Function

For orientation purposes, let us initially consider the bridge circuit
model shown in Fig. 5-1 in which we seek to determine the probability that
the CER between nodes 1 and 4 is less than X. That is, we desire to cal-
culate f(ﬁ,x,t) for all paths connecting nodes 1 and 4. Since by hypothesis
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the 1inks are assumed hard, we only consider the effects of node survivabil-
~ >

ity. Thus, F(P,X,t) reduces to F(g), where the time dependence is implicit.

In contrast to the intuitive devé1opment of Section 3, the deduction of
~ >
F(P) in this case requires the use of the formal aspects of probability

theory.* Thus, for example, we introduce the event Aj defined by the
condition: -

Aj = event that node j is up (5.1)

The probability of survival for the jth node is given by:

Pj =P [Aj] = probability of event Aj occurring (5.2)

As observed from Fig. 5-1, there are four possible paths connecting
nodes 1 and 4. These are indicated as follows:

Path - Sequence
1 1-2-4
2 1-3-4
3 ' 1-2-3-4
4 1-3-2-4

Now let E(i)(i = 1,2,3,4) be the event that path i occurs, that is communication
is achieved along path i. From Fig. 5-1 we readily deduce:

1
e(D) = A, (a)
2 ‘
e(?) - AAsh, o (b)
3 4
e < ) 2 aann, () (5.3)

¥ This can be found in any standard text in probability theory, for example,
reference 3.
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For this discussion we assume statistical independence between the nodes
(this assumption is easy to modify).

If there were only one path connecting nodes 1 and 4 (e.g., path 1)
then F(P) would be given by:

F(P) = P[E(l)]= P [AAsh] = P [Al]P‘[AZ]P[A‘l] (a)
P 1Py (b)  (5.4)

%s to be expected, the foregoing result is the one which would have been de-
Fuced using the method of Section 3.

~ P
However, for the redundant path case of Fig. 5-1 F(P) is given the
quation:

4 .
F® =[] < p [eMueue et ] (5.5)
i=

o the bridge circuit of Fig. 5-1. As a first step we use the relationship

Fhere U stands for the union of events. Let us now apply the foregoing result

e(3) - (@ (5.6)
which simplifies the calculation.

We thus obtain

F(P) = P 35(") - p 3E(") (5.7)
(P) [1=1 ] [1=1 ]
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The general formula for the probability of the union of N events is given by

N O (iyq V1N (1)-(5)
F P[Ei ] 1£1P[E "] LR PLEYVEN]

N-2 N-1 N .
+3 ¥ 5 P[E“)E(j)E(k)]-
j=1 j=i+1 k=j+l

e (Ve [eMel@ ] (5.8)
Applying Eq. (5.8) for N = 3 gives
7= p[eW]+ p[E@]+ p[eC)]- p[eMe®]- p[eMe()]- p[e(2e3)]

+ P E(I)E(Z)E(3)] (5.9)

From the additional relationships:

E(3) = E(l) E(Z), E(l) E(3) = E(3), E(Z) E(3) = E(3), (5.10)

it is easy to show that Eq. (5.9) reduces to:
F = p[EM]e p[e?]- o[V £(P] (5.11)

Using Eq. (5.3) gives

p[eM]= p[aa] = P[] P[22 ] P[Re] = P1P2Pa (a)
P[e?)]= p[asasng] = o] P[as] P[Aa] - PrPas (®)
PleMe(®]= p[aan0A1208,] = P[A1AASA]
= p[A,] P[] P[As] P[A] = P1P2PsPa (c) (5.12)
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In deducing Eq. (5.12) we have used the result (::)

AKA|< = A'< (5.13)

for all k.

Inserting Eq. (5.12) into (5.10) yields
F o= P1P4[P2+-P3 - P2P3] (5.14)

The foregoing calculation has shown by example the method which is used

to compute the performance of hard-1ink networks. The deduction of ng) be-
tween any two endpoints for an arbitrary network is accomplished using the fol-
lowing procedure: First, we identify all the paths connecting the end-point-
pair, and thereby construct the events

EC) o alDRl1) 0 Al avent that path 1 exists (5.15)
1 "2 N (::)

In the foregoing equation Ni is the number of nodes in path i, and A§1) is the
event that the jth node in the 1th path is up. We then compute the function

et1], (5.16)

where M is the number of paths connecting the end-point-pair. Finally, we use
the expansion of Eq. (5.8) and carry-out the compution of the individual terms
in accordance with the usual rules of probability theory. The result of the
expansion will be a sum of terms involving products of the individual Pis,
similar to that given by Eq. (5.14). It should also be noted that none of

the terms will ever involve Pi to any power other than unity.
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To illustrate the point let us consider the calculation of say
P[], (5.17)

terms of which occur in the expansion of Eq. (5.16). Using Eq. (5.15) we have:

pleCIe®)] < p[al1alt) L. a{DA() . A&k)] (5.18)
1 K

In view of the derivation of Eq. (5.12c) we note that some of the events in-
dicated in Eq. (5.18) are the same even though they are labeled differently.
This results from the fact that the same node(s) may be common to two different
paths. However, in view of the result of Eq. (5.13) we note that it is counted

only once in the calculation of P[E(1)E(k)]. We thus obtain the following
result:*

P[E(1)E(k)] =T P, ,: e setof all nodes (5.19)
2 contained in paths i and k,

The computation of all higher-order terms such as P[E(i)E(k)E(j)] follows

the identical procedure with the resultant product of Py consisting of all
nodes contained in paths i, and j.

5.1.2 Cost-To-Harden With Multiple End Points

For a single end-point-pair, such as the bridge circuit of Fig. 5-1, the
minimum cost-to-harden, subject to the constraint that’F(H) is greater than or
equal to some value Ta, is found using the techniques of Section 4. We simply
minimize the function

C.(P.) (5.20)

* The derivation of Eq. (5.19) is based on the assumption of
statistical independence (cf. Section 1).
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subject to the constraint (::)

~ >
F(P) » T, (5.21)
Under normal circumstances the equality sign of Eq. (5;21) will prevail(s).
The summation in Eq. (5.20) extends over all the nodes involved in the con-
nectivity between the end-point-pair.

Now consider the network shown in Fig. 5-2 where it is required that com-
munication between end-point-pairs AD and AG be simultaneously satisfied, and
with different performance levels. Using the techniques of the previous
section, we readily deduce

~

F

AG T PAPEPFPG + PAPBPFPG - PAPBPEPFPG 2 TAG (a)

~

FAD = PAPBPCPD > Tpps (b) (5.22)

where TAG and TAD are the required performance levels for end-point-pairs AG (::)
and AD respectively.

The minimum cost is found by minimizing the function
Cy = CA(PA) + CB(PB) + CC(PC) + CD(PD) + CE(PE) + CF(PF) + CG(CG) (5.23)
subject to the two individual constraints of Eq. (5.22).

In general, the result of the minimization will be such that only one of
the two equations of Eq. (5.22) will satisfy the equality condition. To the
author's knowledge, the only methods for solving Eq. (5.22) are numerical, and
fall in the category of "Nonlinear Optimization Techniques." The method of

solution selected for actual networks is the one developed by Dr. R. Ho]mes(ll)

of Lincoln Laboratory based on the Box A1gorithm(10). The reader is referred to

the references for more detail.

O
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NETWORK CONSTRAINTS:

TIME AVAILABILITY, Fpe,

TIME AVAILABILITY, FAD’ FOR PATH A —> D MUST BE > T

FOR PATHS A — G MUST BE > TAG

AD

MINIMIZE:

Cq = Cp(Py) * Cg(Pg) + C(Pe) + Cp(Py) + Co(Pp) + Co(Pp) + Co(Py)

SUBJECT TO THE FOLLOWING TWO CONSTRAINTS:

FAG = PAPEPFPG + PAPBPFPG - PAPBPEPFPG > TAG

~

F P PoP P> T

AD - "A"B"c'D = 'AD

FIG. 5-2 COST-TO-HARDEN FOR A MULTIPLY-CONSTRAINED NETWORK (HARD-LINK CASE)



Using the result developed for the model of Fig. 5-2 we can write a
eneral statement concerning the mathematical form of the nonlinear op-
imization problem, which will observed to be applicable not only to the
ard-1ink case of this subsection but also to the general network problem
f Section 5.2. Let R = number of end-point-pairs in a network (for orienta-
ion purposes the reader may find it convenient to refer to the network model
f Fig. 1-2). Using the techniques of this subsection we evaluate the per-

formgpce functions, ?G(F), where o = particular end-point-pair (a = 1,2,....R)
nd P stands for the set of all Pis. The Fas would be of the form given by
g. (5.22). We now define T, to be the required time availability between
nd-point-pair a. From these definitions the general statement for the non-
inear optimization problem is:
N :
Minimize CN = iil Ci(Pi) (5.24)

subject to the R constraints:

T@) s (0 = 1,2,...R) (5.25)

a a

5.2 Genera]yNetwork Case

The mathematical development for determining F(X,?,t) for the general
etwork case is facilitated using a specific model. In order to highlight the
ifferences between the general ("soft-1ink") case and the hard-link case, let
s once again use the bridge circuit model of Fig. 5-1, however, this time
ssuming that the links have CERs which are not equal to zero. This model is

shown on Fig. 5-2.

As in the hard-link case we first deduce the number of paths con-
necting nodes 1 and 4 which are the end-point-pair of interest. Once again,

we assume there are four possible paths. We now let

G(i) = event that the CER along path i is less (5.26)
than or equal to X.
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o) L i), (1)
(1)

EVENT THAT NODES ALONG PATH i ARE UP
w(i) = EVENT THAT RESULTANT CER ALONG PATH i IS LESS THAN X

~ N 6]

-’
F(X,P,t) = P[ U
i=1

FIG. 5-3 GENERAL NETWORK CASE USING BRIDGE CIRCUIT AS EXAMPLE




We now assume that the CER received at node 4 is the minimum of all
possible CERs entering that node. The event that at least one of the
CERs is Tess than or equal to X is given by:

(1) (5.27)

(]
n
nche
[ep)

i=1

function'F(X;E,t), which is given by:
4 .
Fox,B,t) = p[el= p[ u &l (5.28)
o]+ o o]

Equation (5.28) is evaluated using Eq.(5.8) with E(i) replaced by G(iz

itself a product of two separate subspaces, links and nodes. We write

o) L (D01,

(5.29)
where
E(1) = event that the nodes in path i are up (a)
W7D < event that the resultant CER due to Tink (b) (5.30)
degradation along path i is Tess than or
equal to X
(1) is the same event defined by Eq. (5.15), and is therefore given by
(1) o Ali),(4) (1)
E = A1 Aol eees A . (5.31)

i

here, as in Section 5.1, A§1) is the event that the jth node in path i is up.

sing the results from Section 3, w(‘) is the event given by the condition

o) = 5 o{" < q (5.32)
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The probability that at least one of the CERs is less than X is the performance

O

However, in contrast to the hard-link case, the evaluatjon of the individual terms
is much more complicated. This can be seen by first noting that each event G(1) is

O



where

Q = -on(1-X) (a)
(1) _ _,opq_y()
Qj en(1 Xj ) (b)
x§‘) = CER for Tink j along path i (c)
Ni-l = number of Tinks in path i (d) (5.33)

Assuming statistiga1 independence for the Tinks and nodes yields the fol-
Towing result for P[G(1)], the probability of event G(1) occurring.

p[e(V] - P[E(i)]P[w(i)] (5.34)
Using Eq. (5.31) yields
P[E(i)] - Pii)Péi) ..... p(1) (5.35)

On the other hand, P[w(i)]is just the Tink distribution function developed in
Section 3. We have:

X
P[] = ¥ x) =6/”'F£‘)(x1)dx1 (5.36)
where ?(i)(X) is the pdf defined by Eq. (3.27) evaluated along path i: there
L
results
=(1) _ #(1) g (i) g =(1)
fL - 1 9 f2 8 DO N _1 [} (5'37)

th

In the foregoing equation ?§1) is the Tink pdf for the j~ 1link in path 1.
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Combining Eqs. (5.35) and (5.36) yields

p[at7] - 'ﬁ;lpgi))?é” (5.38)
j=

As to be expected, the foregoing equation is the same result given for the
single path case developed in Section 3, as given by Eq. (3.35).

Now -let us consider the next level of difficulty, which is the
calculation of the probability of the G(1)G(k), terms of which occur in the
expansion of Eq. (5.28). Using Eq. (5.29) we have:

o[l 6] = p[e DIy (0] )
= p[eMe]p 1] (b) (5.39)

The method for the calculation of P[E(i)E(k)] are identical to the procedure

for the hard-link case discussed in Section 5.1.1, as given by Eqs. (5.18)
and (5.19). That is,

P[E“)E(k)] 2plBk) g P, : %e paths i and k (5.40)
)

where Pgi’k) stands for all the Pls included in paths i and k.

The computation of P[w(i)w(k)] proceeds by first interpreting the joint
event w(1)w(k), once again we assume statistical independence for this dis-

cussion. w(i)w(k) is the event defined by the simultaneous inequalities:
N.-1 .
2 Q(-1) <Q (a)
=1
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. <q , (b)

(5.41)

where the foregoing quantities have the meaning of Eq. (5.32). Similar to
the case of common nodes, there are situations where there exist common links,

as for example, link 5 in Fig. 5-2.

The probability P[w(i)w(k)] can either be computed in "Q-space" or in
"X-space." For brevity, let us carry-out the calculation in the physically-

interesting regime where X << 1. Then from the approximation
Q = -an(1-X) = X

we have in lieu of Eq. 5.41 the following inequalities:

Nl

: x{) < x (a)

j=1 9

N, -1

K

z x(K) ¢ x (b)
m

m=1

From the definition of probability we have(3):

. A ot s .
P[w(‘)w(k)] = FE1’k) = integration over all variables (X§1),Xék))
included in both paths, but counted only
once. The domain of integration is defined

by Eq. (5.43).
The mathematical interpretation of Eq. (5.44) is:

~(isk) = F z
K = [ (e T XX
gl 1,Kk)
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(5.43)

(5.44)

(5.45)



where

(o
>
Q
Q.
><
Q.
><
tl

CER space defined by all Tinks common
to paths i and k, and counted only once

?;?E . ?; = product space of all link pdfs included in
both paths
9(1’k) = domain of integration defined by the
equation:
No-l
poxl9) cx Lok
p=l M

procedure.

(5.46)

(5.47)

(5.48)

When more than two paths are involved, as for example, in the computation

f P[w(i)w(k)w(j)] , the result is again an integral of the type given by

q. (5.45), namely

daX_.
¥

N(iaksj) = 4 -4
F -f (F Fgr ooee TdX LdXge o
)

B
Q(iﬁj,k

PRI ERRE
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(5.49)

where the variables in this case are the CERs included in all three paths. The
domain of integration in this case is defined by the three inequalities:

(5.50)

Fquation (5.48) is a short-hand way of expressing the two equations of Eq. (5.43).
In Appendix B we work out a simple example which illustrates the calculational
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Using the definition just developed, the performance function
F(X;E,t) between any end-point-pair connected by N paths is given by:

Sy 3 ANETE TR N ETE L (1)a(3)
PGB, 1) =PI%51 6] - 3 U E L p[e! V6] (551
R pla(Mele®] 4., (-1)¥hp[a(M6(D) 5M]

i=1 j=i+l k=j+1

From the product space decomposition of the Gs, we reduce Eq. (5.51) to the
form:

Fx,P,t) =P [ , 6l1] - zl(g P 1)) FU(x,t)
i

1

nc=

N-1 N
-z (n p(1sJ ) (3 (x, 1)
i=l j=i+l "2

N-2 N-1 N

i,3,k) i,3,k)
' 121 j= §+1 k= J+1 (]g i )(F . t))

A R Lt

pp(Tadre e Me(iadoe oMy 4y (5.52)
L

When 1ink degradation effects can be neglected, all the FLS in Eq. (5.52) are
unity, and the expansion for F(X, i ,t) becomes that for the hard-1ink approx-
imation.
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Equation (5.52) is the general expression for the performance function
between any end-point-pair. By requiring a certain performance level for
the CER, Xo’ at time to one can determine the minimum cost required to achieve
acceptable system performance using the results of Section 5.1.2. That is,
the mathematical form of Eq. (5.52) is that of Eq. (5.25). The generalization
of the cost minimization for R end-point-pairs in the case of soft-links is
the same as for the hard-Tink case.
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6.0 Mathematical Properties Of F(X;F,t)

The purpose of this section is to discuss certain important mathematical
properties of the performance function F(X;F,t), in the general network case.
Of particular interest is the establishment of the rigorous connection be-
tween F(X;;,t) and the so-called probability-of-survival, Psur' In addition,
it is possible to define a new physical entity called the'network time avaijl-
ability," FNET, which is defined to be the value of F(X,P,t) when all the values

of Pi are set equal to unity. Thus, FNET accounts solely for the effects of the
links.

For expository purposes, let us re-examine the serial chain model of
Section 3 in a new light. The performance function for this case is given by

F(X,P,t) = (_nlpi(t)) FLOGt) + u(-x)(t - T
i= i=

Pi(1),  (6.1)

where the variables have their previously-defined meaning. The reader may

recall from Section 3 that the second term in Eq. (6.1) was included solely
~ >

for the purpose of ensuring that F(X,P,t) was properly normalized. Indeed,

the physically significant part of Eq. (6.1) is the first term.

In the regime X < 1 we have

. J
F(x,B,t) =(.n1 Pi(t)) FL(X,1) (6.2)
i=

Equation (5.52), which is likewise valid in the regime X < 1, is the counter-
part to Eq. (6.2) for a general network. Moreover, from a theoretical view-
point (cf. Sections 2 and 3) one initially derives the useful part of
F(X;ﬁ,t) and then tacks on the step function for normalization purposes.

Using Eq. (6.2) let us assume that there exists some value of X, say

Xx < 1 such that

~ N 6.
FL(XX’t) - 1 ( 3)
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Then Eq. (6.2) becomes: (::)

P.(t) (6.4)

The value X, defines the regime where 1ink effects are no longer of interest,
and as expected, in this case the performance function depends only on the
probability-of-survival for the nodes. Physically, this case encompasses the
range where network performance is determined by the nodes. It is appropriate
to define the performance function for this case as the probability-of-survival '
for the network. We thus have:

A o -> 6.5
Paur = F (P, 1Y) (6.5)
= 1imit of network performance when
1ink effects can be neglected
Using Eq. (6.4) then yields (::)
M
Pour = 11:1 Pi(t) (6.6)

Inserting Eq. (6.6) into Eq. (6.1) then provides the following alternate way
of expressing F in terms of the probability-of-survival for the network:

~

F(X,P,t) = Peyr FLOGE) + V(LX) (1-P ) (6.7)

If we now assume that all the nodes are up, Pi =1, Psur = 1, and the )

last term of Eq. (6.7) vanishes, there results:

~

F(x,P=1,t) = FlL(X,t) (6.8)

As to be expected, Eq. (6.8) shows that in the case where all the nodes are
up, the performance function reduces to the 1link distribution function.

O
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With the foregoing considerations in mind, let us consider the
interpretation of the performance function in the general network case. The
starting point for this evaluation is Eq. (5.52). Once again, we hypothesize
the existence of some value, of CER, Xx’ such that

a3 x Bty =1 (6.9)

for all i,j,...etc. Thus, all the link-dependent terms in Eq. (5.52) become
unity, and the expression for ?(Xxgﬁ,t) reduces to that of Eq. (5.8). This

equation is analogous to Eq. (6.6), and is likewise interpreted as the prob-
ability-of-survival for the network. We thus have, in the general case,

A~
F(Xx,F,t), (6.10)

sur

where F in this case (vis-a-vis the serial chain) is given by Eq. (5.8). Thus,

Psur is a function of the Pis for the nodes in the system; that is;
+
Psur = Psur (P) (6.11)
~ -»
Since F(X,P,t) is a monotonically increasing function of X it follows
that

F(x,.Pot) » F(GLP 6.12
Poyr = FIX,5Ps1) 3 F(X,PLt) (6.12)

Thus, even at the highest CER of interest F(X;;,t) is less than unity which
indicates that an additional term must be affixed to Eq. (5.52) to ensure
normalization of the distribution function. As in the serial link case, we
construct the normalized distribution function as follows:

F(X,P,t) = [Eq.(5.58) ] + U(1-X)(1-P_ ) (6.13)

sur
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In the range X < 1 it is clearly the first term of Eq. (6.13) which is of (::)
interest, also analogous to the serial chain model.

It is also instructive to examine the behavior of Eq. (6.13) in the
case where all the Pis are unity. In this situation Psur = 1 and Eq. (6.13)

reduces to:
~ - A o~ % N ~(1) N-1 N ~('i,j)
F(X,P=1,t) = FL(X,t) = I FL(X,t) - £ T FL (X,t) (6.14)
i=1 i=1 j=i+1
N-2 N-1 N

+ T T T Ffi’j’k)(x,t) + ....(-1)N+1?61’j"'N)(X,t)
i=1 j=i+l k=j+1

B
The function FL(X,t) can be interpreted as the "network link availability."
Physically, it accounts for the ability of the Tinks to support a CER when all
the nodes are up. In a complex system such as the general network, it may be

of interest to evaluate that part of the performance which attributable to (::)
link effects only. We can thus introduce the "conditional network Tink avail-
ability," Ft(X,t), which is defined as

FY(xt) = LKL (6.15)

Since

(6.16)

1

~% >
./‘F (X,P,t)dX =P
Q

we note that ?:L(X,t) is a properly normalized distribution function, sat-

isfying the condition

1

T* =1 (6.17)
Jf F (X, t) oX
Q
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In conclusion, there is an inequality relationship which establishes
a bound on)F(X;;,t). Because the performance must increasecyith a corres-
ponding increase in the probability-of-survival for any node, we have the
additional relationships:

~ ~ ~ ->

FOXGP e Py 1aPe=liPaygaeent) 3 FOGPL, oL Py 1uPLLPL g t)=F(X,P, ) (a)
~ ~* ~ -

F(X,P=1,t) = FL(X,t) > F(X,P,t) (b)

(6.18)

Combining Eqs. (6.12) and (6.18b) we deduce the following inequality,

Py FLRE) 3 (F(XFLL) (6.19)

or equivalently

\/ B*LF (6.20)
PsurFL > F :

Eq. (6.20) permits an upper Timit to the performance to be determined when

simpler methods can be used to calculate the individual entities, P v and F,*

su L °
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7.0 Computational Technique (::)

Computational complexities arise from the evaluation of the link-
dependent 1integrals as given for example by Egs. (5.45) and (5.49). For
the case of M paths connecting an end-point-pair we have:

~ (1,2,....M) -~/~~ ~
F L = [F.(x) ... GH0W) T ax. (7.1)
M
where
M = number of paths (a)
O = domain of integration defined (b)
by inequalities:
Nd-l (0)
r X <X:0=1,2,....M
p=l ¥
Ng = number of nodes in path o; (c) (::)
hence Ny-1 = number of Tinks
in path o
xic) = ™ Tink in path o (d)
Xa,...,XY = the set of distinct CERs involved (e) (7.2)

in the entire set of M paths con-
necting end-point-pair

Without going into extensive explanations, it suffices to say that the '
multi-dimensional integral of Eq. (7.1) is too costly to perform using ex-

plicit numerical integration techniques when a large number of links are involved.
The Monte Carlo technique(14_16)

-

provides a method of estimating the numerical
value of the integral based on a statistical sampling procedure. In this section*
we shall present a discussion of the conceptual basis of this technique as it
applies to the computation of Eq. (7.1).

* The method described in this section is the so-called "crude Monte Carlo."
In a subsequent publication we shall present a discussion of more efficient
Monte Carlo techniques based on the mathematical properties of the pdfs.
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(::> Since the CERs for each Tink are confined to the'range

we can write in lieu of Eq. (7.1),

~ 1.1 1l oo >
FLB Mo ERE) ) )
0 o 0
where
FRE)) = (B0 B 00) v X (a)
) = ax .. ax_ (b) (7.5)

1, if Eq. (7.2b) is satisfied: (a)

0 otherwise (b) (7.6)

Since ?(;(S)) is square-integrable the integration of Eq. (7.4) can be
performed using the crude Monte Carlo method discussed in reference 14. In

* this method we 1et'f(s) be a multi-dimensional random variable with each com-
ponent ng) belonging to the set defined by Eq. (7.2e), and defined in the

range given by Eq. (7.3). Essentially, we identifyly(s) as a random variable

with each component being uniformly distributed between 0 and 1. That is, we

>
define a pdf for X(S) defined by the equation:

-»

PO(X(S)) =1 for 0. < X; <1 (7.7)
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The mathematical expectation Me’ of ?K&js)) is then given by: (::)

1 .
W, [FRC)] f JEE G @S, )
0 0
which using Eq. (7.7) gives:

=ff FX(s)y gx(s) (b) '
0 0

1,2,...M) ’

- 7 (7.8)

Now suppose we have NO trials, with

ngz = value of ng) in the kth trial; (a)
K=1,2,,.00... No
s
Yé ) = set of all xg ) (b) (7.9) O

Assuming a uniform distribution for each ng) in accordance with Eq. (7.7)
then gives the following value of f for the Kth trial

~

f,-K - ’f?’(')?és)) (7.10)

~ D
The average value of f(X(S)) for N trials is:
~ '*(s ( ..M)
F > 3 (7.11) .
< (NO)K 5 L,N

The accuracy of the estimate for FL improves as the number of terms, Ngs in-
creases For a fixed level of confidence in the estimate for FL the variance

-y )
of (F L N ) behaves as No2 and is independent of the dimension space. Kahn(ls)

and Davis and Rabinowitz(le) discuss variance-reducing techniques which ultimately
require fewer samples for a fixed level of confidence. (::)
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8.0 Conclusion

In this report we present a theoretical method for determining the
performance and cost-to-harden 1arge‘C3I networks involving redundant paths
under nuclear-stressed conditions. With the exception of the link calculations
the analytical models developed in this investigation have been implemented on
a large computer system, called CNAS(17). This computer system has been used
successfully to evaluate the performance and cost-to-harden the 22 PACOM net-
works under the APACHE program; and in addition has been incorporated at SHAPE for
subsequent application to NATO C3I systems.

It is shown that the performance of a network can be evaluated in terms
of a set of functions, F@(x;ﬁ,t), which for the ath command post pair is de-
fined as the probability that the character error rate (CER) is less than or
equal to X at time t following the onset of the threat. The parameter
P - {PI’PZ""Pi’ ,Na 1} where Pi is the probability-of-survival for node i
and Na is the numggr qi nodes involved in the connectivity between the ath
end-point-pair. Fa(X,P,t) is called the "performance function" and is rig-
orously deduced from the principles of probability theory based on the model-
ing of nodes as binary random variables (they are either up or down) while all
the 1inks may have a continuous distribution in CER due to degradation of the
propagation medium caused by nuclear detonations. Methods for computing
F;(x;g,t) are presented.

When 1ink degradation effects can be neglected the performance function
depends only on 32 i.e., Fa = Fa(g). Iﬂ pﬁis special case, defined as a hard-
1ink network, it is convenient to call Fa(P) the end-to-end probability-of-
survival, Psur’ On the other hand, when the nodes are assumed to survive, as
perhaps would be the case in mobile systems involving a limited number of
nodes, the limitation on performance is controlled by 1link degradation effects.
In this case one can set P = 1 in the expression for ?&(X:P}t)'and Eherggy
deduce a quantity called the "network link availability" F&(X,t) = Fa(X,P=1,t).
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Using the equations for Fa we find the minimum cost to achieve network
survivability by first selecting the required CERs between command post
pairs, XQ, and the time t0 at which minimum performance is to be achieved.
We subsequently express the network cost function as: 'CNT=ZCi(P1), where
C.(P.) is the cost required to harden node i to.probabi1ity of survival Pi’

it
and N is the number of nodes. Minimizing Cy; subject to the set of inequal-

~

ity constraints, Fa(Xa;E;t) 3_Ta = constant = required time availability for
each o gives the minimum cost for network survivability.
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APPENDIX A: EXAMPLE OF METHOD OF LAGRANGE MULTIPLIERS

For purely illustrative purposes let us consider a simple analytical
form for Cj‘ Assume that the cost for hardening node j is given by
(using the notation of Section 4)

.= A.+B.P. .1
CJ AJ BJPJ (A.1)

where Aj and Bj are constants. We then have:

&
= B, A.
9P,
j J
3C.,
P. 4 _ B
i apj = Pij = A (A.3)
which gives,
.= A/B, = ¥.() A.4
Py = A8y = ¥;0), (A.4)
or equivalently,
. = - B. = v, A.5
en Pso=an ) - n By o= en ¥y (A.5)

Substituting the foregoing result into the equation:

M
T o v.(n) = ang (A.6)
=1
gives:
M M )
Ten%.=ManAx -3 enB,= ng (A.7
j:l J j:l J
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The solution of Eq. (A.7) for A is given by:

M
¥ =\fg 1 B, (A.8)
j=1"

The value of the probability of survival for node j at the minimum overall
cost is determined from the equation

Pox=y.(a%) = AX (A.9)
J J B.
J
Using Eq. (A.9), the cost of hardening node j at the minimum value is

Cj* = Aj+Bij* = Aj+ Ax (A.10)

while the overall minimum cost is:

M
C.* =1

A.+M0* A.11
(G5 = T A (A.11)
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APPENDIX B: CALCULATION OF PERFORMANCE FUNCTION FOR A
SIMPLE NETWORK INVOLVING A REDUDANT LINK

The purpose of this appendix is to demonstrate via a simple example
the method for computing the performance function in the soft-link case.
Fig. B-1 depicts a model in which there are two paths by which communica-
tion can be achieved between nodes #1 and #3. Using the notation
Section 5 we have the following expression for the performance function

>
P

F(X,P,t)

p[6] =r[cMuel®] (a)

pleD]+p[al@]-rp[eMs?)] (b)

LM ]p D]+ @] p [

e [EWe@ ] (@], (o) (8.1)
Using Eq. (5.15) we obtain the following results for E(1) and £(%),
S NONGRE | (2)
£(2) = a{2Iaf2a2)al2) (b) (8.2)
where
A = s D) = ngs D) < s agt) = g (a)
a2 = s alD) < ag A2 = ny AfD) = a (b) (8.3)
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In the foregoing equation Ai (i=1,2,...5) is the event that node i is up.

The event E(I)E(z) is given by:
(L) (2) _ _
gLHgle) o (A1A4A2A3)(AIA5A2A3) = AyAARA (B.4)

Assuming statistical independence gives:

p [e)] = P1P4P,P5 (a)
p [e(?)] - P1PsP P (b)
p [eWeD] < pipp.p,p, (c) (B.5)

The results for P [w(l)], P [w(z)], and P [w(l)w(z)] in the realm where
Xi << 1 are determined in accordance with the method of Section 5.2. We have:

p (WL

"
-

X .
Y - 5/' 7 oeyex (8.6)

- where

~hl
—
—
~
—
><
s
~
"

L
[ R0 )F (i, (8.7)
0

~

and f ,f3 are the pdfs for the links. Equation (B.7) is recognized as the
convolution integral. Equation (B.6) can be simplified in the following way:
We Tet

700 = &(F0) (B.8)
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where Fl(x) is the CER distribution function for 1ink 3. Substituting (::}
Eq. (B.8) into Eq. (B. 7) gives:

(X 2
f L1 g (B.9)
)
Using the general result for any function y(X*,X”*); namely
X X
4 f WX, X" )dX"” = 2 gxee # p(xe,x77=X")  ,  (B.10)
dX~ aX”
0 )
combined with the condition
F1(0) =0 (B.11)

gives:

(1) (y-y = X7 )dX- B.12
fl _d_.f L (X7 =X7)dX (B.12) O
0
Substituting Eq (B.12) into Eg. (B.6) gives:
f 7,00 (XX "7 dx (8.13)

In a similar way we can readi1y show:

2 )/ » s
f Fa(X "), (X-X"")dX (B.14)
0 ¥

Using Eqs. (5.44)-(5.46) gives:

~(1,2) _ ¥ \F
p [w(Dy(2)] - FE ) fff i Xl)fz 2)F3(X3)dX;dX,dX, (B.15)
(1,2)

p[u?) —E

Y/
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(1,2) .

where Q is the domain of integration determined by the inequality

conditions:
X1 + X3 < X (a)
X2 + X3 < X (b) (B.16)

For this case it is possible to integrate over X1 and X2 independently up to
the Timits X—X3, thus yielding

=(1,2) _ 7 = ~
FL -f F3(X3)F] (X-X5)F H(X-Xy) (8.17)
where Fl’FZ are the CER distribution functions for links 1 and 2.

Combining the individual calculations gives the following final result:
F(X,P,t) = P,P f (X~ {P 4, (X-x"")
F(X,P,t) = P 2P3 f ) (

PeF (X=X ") =P, PFy (X=X~ )F,(X- X )|ax- (8.18)
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