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ABSTRACT

Methods for calculating the reliability of EMP-perturbed systems are presented and discussed.
Formulas for the reliability of components subjected to random stresses are derived with the aid of the
theory of discrete Markov processes. Techniques for evaluating the formulas are illustrated by examples.
The reliability of systems subjected to certain types of failure and repair is computed. Techniques for
solving the resulting differential equations are derived. The theory of structure reliability in terms of
component reliability is extended to include continuous Markov processes which arise in the considera-
tion of electromagnetic-pulse (EMP) perturbations of a complex structure. Classical methods for evalu-
ating reliability functions for communications systems are presented and their applicability to EMP
problems considered. The work was sponsored by the joint DCA/DNA Program for EMP testing

(PREMPT).
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1. INTRODUCTION

These notes were prepared for a series of talks on reliability theory, given as part of a “sto-
chastic processes workshop™ at the Electromagnetic Effects Laboratory (EMEL) of Harry Diamond Lab-
oratories. One programmatic goal of EMEL is to determine the reliability of communication nodes of
the Defense Communication System when subjected to electromagnetic pulses (EMP) arising from high-
altitude nuclear explosions. The talks have been directed toward solving some problems that arise in this
field, while introducing the basic concepts in reliability theory. Since most participants of this workshop
had postgraduate training in mathematics and physics, no attempt was made to keep the discussions at a
low level of sophistication. If any technique appeared to be useful, it was used without presenting any
background material. ' \

The first problem concerns a possible approach to calculating the degradation in reliability of an
electrical component when it i subjected to random electrical stresses such as might arise in an EMP
attack.

The second problem treats a communication node as a set of well-defined subsystems subject
to periodic failure and repair. This leads to an enumeration of the possible states of the system and con-
sideration of a set of linear differential equations describing transformations among these states. -

The third problem deals with the relationship between the reliability of the components of a
structure and that of the structure itself. This discussion is mostly concerned with the formal theory of
the subject but it leads quite naturally to the study of the reliability of large, extended networks and
some of the real problems associated with any meaningful calculation. '

2. RELIABILITY OF AN ELECTRICAL COMPONENT
SUBJECTED TO RANDOM ELECTRICAL STRESSES

This section defines a model that will allow the calculation of the reliability of an electrical
component of a structure subjected to a series of EMP events. We assume that the EMP events arrive
randomly at the structure at a given average rate. The effect of the EMP is to produce an electrical
surge at some or all of the inputs to the component. We further assume that we can characterize the
component by a finite number of failure probability levels, to each of which we can assign a failure
rate. These failure levels could represent the different electronic states of the component (as in a digital
logic circuit), some of which would have different susceptibilities to failure during an electrical surge.
Since the failure rates depend on the strength of an EMP event, they should be continuous functions
for each electronic state. The calculation is greatly simplified if the continuous function is replaced by
some average value. The continuous distribution is discussed in section 4.8. By suitably defining transi-
tion rates between levels and the probabilities associated with the occurrence of the internal states, we
then provide methods for caleulating, as a function of time, the average probability for the component
to be operative,

2.1 Derivation of the Cumulative Distribution for the Time to Failure

To obtain the probability function, we must define various quantities. Let




Py = the probability that no failure of a component occurred prior to or at time ¢
P, = the probability that failure of a component occurs between times ¢ and ¢ + dt

P, = the conditional probability that a failure of a component occurs between ¢ and ¢ + dt,
given that no failure occurs prior to or at time ¢

Py 4 = the conditional probability that no failure of a component has occurred prior to or at
time ¢, given that a failure has occurred between ¢ and ¢ +dt.

It is clear that P4 = 1 since we do not admit grOcesses such as repair and retumn to service.

Noting that we have two dependent events, “1” and “2,” the conditional and unconditional

probabilities are related by (Bayes’ theorem)

Le

tio

-~

Pyy X Py =P, X P,. | )
F(t, v) be the probability of failure occurring prior to or at time ¢ if the failure rate is v. Then

Py =1-F(,7). ~ ; €)

P, f given by the probability density function f(z, v) (associated with the cumulative distribution func-

F(t, v)) times the increment of time dt

Py =t par= LD gy 6)

P, is given by the product of the failure rate ¥(f) (sometimes called the hazard rate) and the interval d¢

Fro

<

Py, = y(n)dt. | : , )
m equations (1) through (4)
2" - - ®
O e | -

Integrating equation (5) and solving for F(t, 7)

F(t,y)=1—exp [-— fo 7(:')dt']'. ~ , ‘ 6)

If we have a constant failure rate y(¢f) = 7o, we obtain the familiar exmntial time-to-failure law,

F(t,v9) = 1 — exp (=1g1). )

suitably choosing 7, other familiar distributions can be obtained. Some are tabulated in references
nd 2.
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22 Definition of the Averaged Probability Function

By suitably classifying the types of electrical stresses and internal states of a component, a set
Il of failure rates can be defined |y| = ST 7T 'yql. For each pair of failure rates, a transition
probability must be defined to describe the physical processes under consideration. For every failure
rate, it is necessary to specify the a priori probabilities that it occurs. All these quantities are defined
precisely in the following.

From our previous discussion it is clear that we need to evaluate the average of

exp [ - f t (' )dt']
0

under the assumption that y(¢) randomly assumes values in the finite set of failure rates 177, 7,5, ..., Yl
Denoting the averaging process by ( ) and defining p(?) as the averaged probability,

t
p() = {exp [— f 7(t')dt'] ). ®)
0
The average will be evaluated by assuming that () is a stationary Markov function.

23 Properties of Homogeneous Markov Functions

A homogeneous random function y(¢) is a Markov function if its probability of having value v,
at instant #, given that it had value v; At seconds earlier, is independent of all values that the function
might have had prior to the instant # — A¢. In addition this probability depends only on the tie diffei-
ence between the two events. Denote this probability by W(7;, 75, At) and hypothesize that for small
At

w(7]9 729 At) = 87172 + n(?]’ 72)A’$ (9)

WO, 72,40 =8, , [1 - Q)AL +201)P(n, 17)AL, (10)

where §2(y;)At is the total probability of going from value 75 to a different value during time A, and
P(y1, 73) is the relative probability that the final value is ¥;. Given the condition that

q
2 WO v A0 = 1,
k=1 :

the following identities are apparent from equations (9) and (10):




T(p = -57,110(‘11) + QE@DP (i 1),

P(’]’ 7}) = 0:

q
k=1 o

q
Z: (%> 1) = 0.

k=]

t
24 Evaluation of (exp [—-J. (' )dt'])
0

We now return to our evaluation of

(exp [—f ' ¥ )dr']).
1]

Divide the integral into n equal intervals and let Ty Tigr++ s My, be the values of the failure rates at
the different instants, ¢, ¢, ..., ¢,, where t; =jt/n.  Thus

t o
exp —f y(¢')dt' | = lim exp[--f-(’y, ty, to by )]L (12)
0 Nepw n 1 2 n

Let P(y,l, H Vigs 8o v e Wiy ) be the probability that the failure rate isy; att, Viy 813, ..0s

Vi 3t n- The average (eq. 8) is obtained by summing the product of equation (12) and the probability
P over all possible combinations of the 4’s. Thus

q
. t ;
P()= lim ;Z : IP(‘Y;lJp’ﬂz,?z_.-o-.‘Yln-tn)exP[‘ﬁ(‘Yfl*'7:2"‘ +7,,,)]. 3)
1igeeceidy®

Since the process is a stationary Markov process, the probability 1’(1',l v by Ty ty, ey N, t,) can be
written as a product of the probabilities W (y; x 7,#1 , t/n), thus: ,

q9 ,
. t ¢ ¢ coe
p@O= lim 3" WO WO Y)Wl Vi) exp [—;(‘r:,*‘ Tp oot 7:,,)] ,
i1s895c0ayip=1 (14)

10




Repo

n
P(t) = lim wou) TT [exp(—;’,7;m_1)W(7,m_l,7,m.;E)]exp F2%). a9
11'12"“'6.1,‘ m.; .

W('yim. 1 Vi t/n) is the element of a ¢ X q matrix represented by W(z/n), exp [—(t/n)'y,m] is an ele-
ment of a g X q diagonal matrix exp [—(#/n)y] whose diagonal values are exp [—(t/m)v,]1, exp
[=(t/n)7a), ..., exp [—(t/n)‘yq]. W) is the ith component of a row vector of dimension q, specifi-
eallyA W= W) Wh), ..., W(‘yq)] . W(y;) is the a priori probability of finding the system in the
failure-rate state ;. Asn - oe, ¢/n)~ 0, and éxp [—{t/n)-y‘n] -+ [T] /‘n’ where 1 is a column vector
with ones for each of its elements, Equation (15) is clearly in the form of a matrix product. Thus

- 3

PO= m ¥ o (L] a9
Since #/n is small, in the limit 7 - oo,

oxp (L W~ - L)1 + 2 4)= 1+ £ (4 1) | an
Therefore

. -1

I [ﬂp(—;',z)'x(%)] "o lim [1 +a (g ,u;)]" = explr(~y + M) . )
From equations (13) through ( 18) ‘

p() = W- exp [t(=y + m)] 1. 19

Note that p(r) is the average probability of no failure prior to and including time ¢. The 'quantity p(t)
is also defined to be the reliability of the component at time 7.

The evaluation of p(r) in any specific case is somewhat complicated by the term exp {41}
where 4 = =7 * .7 is a square matrix of order q. By definition

- Aty
exp (41) = S—;—,-— ’ | (20)

n=0

s0 to determine p(f) we must evaluate and sum a series of matrices. This is tedious at best, and impossi-
ble in most cases. The calculation can be simplified by evaluating the Laplace transform of p(t), denoted
by p(s) where ‘ .

p(s) = w-[j‘uexp (~sir) exp Qt)dt] 1, | o @n
0 -

11



ps) = W- (sl - AYL-T. | (2
Here [ is the ¢ X q identity matrix.

After matrix inversion, we obtain p(¢) by inversion of the hphbe transform, usually by using a
table of transforms.

2.5 Exact Solution of a Two-state Ho&:ggneous Mnrkoi' System

We now examine a tractable case of a homogeneous two-state system, where 7, is the failure
rate in|the normal operating state and 73 the rate in the EMP-excited state:

0 0) R

The vector of a priori probabilities is of the form Wy = (P, P,) mu we expect that Pl >> P,. From
the definition of the transition matrix ,

"(7¢’ 75) = 87 a‘y’n('ya) + 9(74)"(7(;’ 7p)a (24)
we have
-9, @
= . \ 25

Here £, is the rate at which transitions take place from the normal state to the excited state and Q, is
the rate at which transitions take place from the excited state to the normal state.

The matrix s/ - 4 then becomes

s+y +8,, -
si-4= 17 L (26)
-3, sty + 92
The inverse of the matrix sI-Ais
s+ 72 + Qz, Ql
- 1l = - * 27
GL- 45! = {1V [(s+ 7 +9))e + 7, + Q) - 2,951} 2 st +Qy e
The Laplace transform of p(r) is ) : ,
1] _PiG+ 72+ Q) + Q) +Py(s+7, +Q, +Q,)
= - 1 = = —
p(s) = Py, PyXsL - Ay [1] (7 +Q)Xs+7,+2,)-Q,Q,
, - (28)
= (s + u)/(s + a)s + p).

12
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From a table of Laplace transforms we can now find p(¢)

P®) = Gf exp can + B12E op (g @)

where

.o ) )
87 Rt r )2t oy 40—y, —a,7 4 491—5‘2/2
A= 1

M= Ql +Q2 +P172 +P2'71.

25.1 Some Limiting Cases of 2 Two-state System

‘One simple example has as conditions

' n- O,vwhich implies that the apparatus does not fail in its normal operating state,
2y =y = Q, the transition rates between states are equal, and

Py ~ 1. For notational convenience let 7=7,.

Then

g = (y+20)2 % ]/-,2 + 492/'2
u o= 7+2a,a-5=|/72+4n2' (30)
g::: = -(vy+2Q)2¢ ]/72 + 4Q2/2.

This yields, after some algebraic manipulation for the probability of no failure, the expression

, g - (+ 29):]
p(o) = —m%;—- (v+2Q)sinh VY2 +4Q2 + Va2 4402 cosh 142 + 402 .

@Bn
As a second example we choose the following conditions:

71 -+ 0, indicating that the component does not normally break,

2, - 0, implying that once the component appears in the excited state it does not return
to the ground state, and

Py ~ 1. For notational convenience let y = 72,2 =Q,.

From equation (29)

13




a = 09 B=‘Y’ a‘ﬁ’“"?
u=QQ+y A=l (32)

a—-p = =y, f-u=-Q.

This yields, for the probability of no failure,

It can

26

the si
equatil

p(®) = - Z 5 %P (-ﬂ‘t) - 1? ﬂ‘ exp (—7?). 33)

easily be shown that p(¢) satisfies a fundamental property of probabilities, that is, 0 < p(r) < 1.

Exact Solution for a Three-state System

The two-state system with homogeneous Markov chains describing the transformations is of course
plest possible case; one of our examples, equation (38), can easily be derived from a differential
n approach, to be discussed shortly.

Before leaving this section, note that many’ “failure rate levels” may exist in an EMP-stressed

system. Another possibility might be illustrated in the “failure rate diagram™ shown below:

73

7

e

t correspond to the normal operating failure rate, 73 to a transient, high-risk state occurring

7
only uring EMP perturbations, and y, to a failure rate state obtained by weakening the component
during EMP attack. The possible transitions are indicated by arrows on the diagram. It is possible to

write

14

down p(s) directly from our definitions.
Ty = =2y, M2 = QP 73 = QP
Plz "'P13=l, define p'Plz, '
M1 =0, myp = -8y, w3 = QPs3,
34
Py =1, (34)
My =0, w3y =Q3P3,, 733 =03,
P32 =1,




The n matrix then becomes

-Qp 911’. 91(1 -p)
=10 -a, g

(3s)
0, 9, -0,
The y miatrix and the W vector have the form
1=l 0 v 0#W=q,0,0). (36)
0 0 ¥
From equation (22), the Laplace transform of the reliability is
Frnta -p  -9,0-p0]! |
pGs) = W- 0, st + 9, -0, T. | (37)

0, -3, sty +Q

By carrying out the inversion and the inner products indicated, p(s) can be seen to have the form

A;s2 4 N5 4 2y % -
(+ay)s+a))s+ay)” (8)

PGs) =
Here the ); and &; > 0, i = 1, 3 depend on the ’s, s, and a priori probab:lnties The inverse transform
yields the following expression for p(r):

(o - “1)(“3 Tapy P

p@) =

NE0) 4 2(-ay) +2y
(@3 - a)oy - @)

“exp (—ayf) (39)

7\1(-—&3) + 12(—ﬂ3) + )\3
(@ - a3y - a3)

-exp (—as?).

The solution for the n-state case is readily obtained in a similar manner. It has the general
form :

n
p(t) = Z W; exp (=N0).

=]

15



3.1

METHODS FOR CALCULATING THE RELIABILITY OF SYSTEMS
SUBJECT TO FAILURE AND REPAIR

Introduction

As an introduction to another method of calculating reliabilities we will examine a three-state

system. (This corresponds to the example that leads to equation (33).)

pon
of o¢

Itis
The

(failure state of the system)

(state created as a result of stress)

(normal operating state).

In sjate 1, the component does not fail; in state 2, which is being fed from state 1 at rate 2, the com-

nt fails at rate vy into state 3, which we call the failure state. If P;, P,, and P; are the probabilities
ccupation of states, then clearly we have the following differential equations: o

dpP,(t)

dP
T80 o rw+ a0, Py0) =0 - “0)

W .
“0%(2 = yP,(1), P3(0) = 0.

a straightforward task to solve the above system of equations subject to the listed initial conditions.
solution is ' : ’

Pi() = exp (-Q0)

Py(0) = s [exp (1) - exp (~y0)] | @0
Py() = 1+ 7 _‘_2 G %P (=vt) - '}_—Iﬁ exp (—21).

reliability is given by the sum of the probabilities of the nonfailure states

p(t) = Py(t) + Py () = 1 - P3(n), 42)
p@) = — e exp(-an) -~ exp (-1), - “3)

which agrees with equation (33).

16
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3.2 Formal Discussion of Markov Processes

Now a more general method can be discussed, which allows the determination of the probability
of occupying a given state of the system once the failure rates and the repair and/or replacement rates of
the components are known. First a formal discussion of Markov processes is needed.

A continuous parameter stochastic process [X (), t > 0] is said to be a Markov process if, for
any set of n time points #,, 13, ..., t, with

X)), X(), ... X(,) iy <t3< - <1,], @4

The conditional distribution X (t,,) for given values of X (¢1), ..., (t.1), depends only on X (tp.1). Thus
we may write

Plx@,) = X X)) =%y, ooy X(lpy) = Xy 4]
, - ‘ 45
= P[X(ln)=xn|X(tn,l)=x,,,l]. ( )

The sequence [X (4] is called a chain,

To specify the probability law of a continuous parameter Markov chain, it suffices to state for
all times ¢ 3 s 3 0, and states j and k, the probability function,

P = PX()=k], : (46)
and the conditional probability funct@on (sometimes caled the transition probability function)

Py(s, 9) = P[X(1) = kIX(s) = ]. @7
The chain is homogeneous if we impose the following condition: |

Py(t) = PIX(t +u)=k|X(u)=/], foranyu > 0. (48)

33 Derivation of the Chapman-K olmogorov Equation

The transition probabilities satisfy a fundamental relation called the Chapman-Kolmogorov
equation. For all times ¢ 3 u 3 s > 0 we must have

PIX@ = KIX()=/] = D_PIX() = KIX@) =, X©) =/ X PIX@) = iIX©) =/],  @9)
i
Pys, 1) = D Py, Py, ). | (50)
]

If a transition probability matrix P= (479 is defined, this can be written as

P(s, 1) = P(s,u) P(u, 1). (62))

17
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Derivation of the Forward Differential Equation for the Markov Chain

To obtain the transition probabilities one usually obtains differential equations for them; one
» however, have to make some assumptions.

Assume that‘
N |
th‘oT (1 = Py(e, ¢ + m)) = qi(0). (52)

quantity [1 — Py(¢, t + h)] is the probability of transition from a state / to some other state during
ime interval &, and q,(t) is sometimes called the intensity of passage. Similarly, assume that

tim Pik(t’ t+h)

Jim L =qu(, i*k TR (53)

quantity q,,‘(t) is called the intensity of transition. It is also written as q,(t)pjk(t). The quantities
d qjx correspond to the @ and 7 transition rates introduced earlier. Clearly, if the chain is homo-
Ous, the intensities are too. Manipulating equation (50) to take advantage of the assumptions,

Py(r,t+h) = ZP/,(T, OP,(t, t + ), H B (54)

Pulr, t + h) = Pyr, 0Py, t + h) + ;p,v(r, P, (t, 1 + ). - (55)
vk

Utilizing equations (52) and (53)

Py(r, t+B) = Pyr, 01 = hgp (0] +)_ Py (r, DRy (. (56)
vik ;

\

Rearranging and taking the limit A » 0

hlin}) %[P,,,(r, t+h) - Py (r, ] = —qk(t)ij(f, ) +§P,,(r, 0,5 (). ; 57
- v
In the limit
2p (r,0)=-P +ZP (58
ot ]'lt ) t) - }k(fv t)qk(t) v#k [v(f; t)qvk(’)' )

This
tion

If th
depe

18

is the so-called forward differential equation for the Markov chain. The backward differential equa-
treats 7 as the variable. It is not needed for present purposes, but is listed for completeness.

;,%P;k(r, 1) = qj(r)Pi(r, £) - %q,-,(r)?,,‘(f, 0. (59)

chain is homogeneous, the intensities are independent of ¢ and the transition probabilities do not
dontand 7 butonlyont —7=¢. Thus equation (58) can be written as




R e N kP s et w3 o+ an s

d
d—tpik(‘) = —Py()qy + ;;P/v(t)q,k.

(60)

Suppose now we are not interested in the initial state j. We then can average over all initial states and

define the probability of occupation of the state k » Pr() as

P =2;a,q,,(z).

LP() = —Py@Oag + ) P,(1)ayy.
dt vék

Equations (58), (60), and (62) all have the following form:
Ly = BOo.

For example, if U and H are given by the following matrices,

[Py, Py s - -, Py -4y, *431, ..., 4]
Py, Py, +412, 42,

Us= , H =
...P” < P”—- | q“ . . . -q,d

equation (58) or (60) follows. If U is a vector given by

Py

- | P2
U=,

By

equation (62) follows,

3.5 Solutions of the Forward Differential Equation

35.1  Equivalent Integral Equation and Some Special Case Solutions

Equation (63) is equivalent to the integral equation:

(61)

62)

(63)

(64)

(65

19
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s
o = Yo+ fo HEY(r.

iterative procedure the following equation is obtained:

=t | ‘ 'n-1
ue =) J; dt, fo dty - | dBEDEE) - HELO).

n=0

This is-a solution to our equation, though not in a very usable form.

3.5.11

As in ¢

which

Time-independent Case

If H is independent of time as for the homogeneous case,

ue = i: H"In1Y©) = exp HOU(O).
n=0

our earlier work, we can introduce the Laplace transform of u
Ue) = J exp (—sIt) exp H)U(0)dt,
0

has the solution

U@ = GL- By

After evaluating U(s), U(t) can be found from a table of Laplace transforms.

3.5.1.2 Use of the Feynman Calculus for Solving the Time-independent Case

tors ¢

L

them an

would

equation (52), ~

and le

20

le
"

t ¥ be the matrix consisting of the intensities of transition, Qie» introduced in equation (53),

(66)

7

(C)

(69

(70)

An equivalent approach to solving equation (68) is to separate the operator H into two opera-
and ¥ and use the techniques of Feynman’s operator calculus (ref. 3 and 4), which disentangles
d thus makes computations considerably simpler. A convenient choice for the two operators
be to let ¢ be a diagonal matrix whose elements are the intensity of passage ¢, introduced in

an
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e
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] q 1 « . 0
Equation (63) then can be written

LU0 = -+ pUo.

(72)

(73)

Transform {/(¢) into Y (t), where V(f) = exp @t)U(t) and ¥(0) = U(0). The operator V(o) then satis-

fies the following differential equation:
3;:21?) = -y(Or®
where

YO = exp @1y exp (~¢1).

The solutlon to equation (74) is obtained by nterauon of its equwalent integral equation, thus:

n.1 .
Yo = ( 4 f dr, f dty -+ J; dr,,g(t,);‘b'(:z)x-ux Q(t,,)_!_f(O)..

Thus we may also express the solution to equation (73) as

n=0

n L -
ue = exp(-qbt)Z( )"fdt,f dty j dtng(tl)g(tz)...Z(t,»,)g(()).
0 0
The Laplace transform U(s) is, as before,

vo = [ exp (Ut

Define ‘
.-‘é(tn - tn') = exp ["2(’;1 - ’n')]»

B(, - 1) = ,g’ﬁ(tn = 'n')”

(74)

(75)

(6)

an

(78)

()

(80)

21




anQ their Laplace transforms ,,’

40 = | Cexp (<sINA ()t = (L + §)
0

@1)
BO = y4©).
The first few terms of equation (77) look like
I ot
Yo = 40~ [ 4¢- ngaein
o ]

By

com

t (82)
¢ 1
+ f dr, J dty At - t))YA( - YA, + } U (). '

0 0

ui:g the convolution theorem of Laplace transform theory, equations (78) through (82) can be

ined to yield S
UE) = AGU- B6)+B6P + 10O, (83)
U@ = 4@+ BOI'YO). ﬁ' @84

If numerical difficulties arise in inverting equation (70), equation (84) represents another solution that
may be easier to obtain. This is especially true if B can be considered small compared to /; then

I+ g)'l may be expanded and only the first few terms kept. (Note that 4 (s), defined by equation
(81),is a diagonal matrix; its k*h element is just 1/(s + ¢;). In this case no complicated inversion of
matrices need be carried out.

3.5.

1.3 A Solution for a Certain Class of Time-dependent Equations

It is well known that if & depends on the time ¢ and if o
[H@),H({)) = 0 (t2))

then a solution to equation (63) is

It is not known whether any useful, practical system will have associated operators satisfying equation
(85). Most time-dependent cases are very complex.
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36 Charactgrization of a Subsystem of an AECo Switch in a Reljability Model

In most cases of practical interest (such as an EMP-stressed AECo switch) one usually limits the
number of states so calculations can be easily performed. A finer structure in the calculations can always
be obtained by further classification of the original set of states. The procedure to be followed in ob-
taining the reliability function for a system is to calculate the probabilities of finding the system in non-
failure states, add those probabilities, and thus form ‘the reliability function.

We will apply the formalism in a simple manner to a subsystem of an AECo switch. Let us, for
the moment, consider only five subsystems (ref. §): the three logic systems (4, B, and C) and the two
memories (X and Y). We assume that the switch is in some kind of EMP environment, such as would
result from a real or simulated nuclear attack. This causes the breakdown (at some rate) of the five -
subsystems, which are repaired at a different rate. Repair can also mean, in this context, just the re-
setting of the logic system, which may have been switched into an unacceptable logic state. This type
of calculation is obviously included under the title *reliability models™ including repair.  We can clearly
identify 12 states, as listed below: e

State _Characterization

E, nothing failed

E, 1 memory failed 0 logic system failed
E, o " " P " " "
E, 1 " " 1" " "
54 o " " 7 " "
Eq 1 " moogm " "
Eg 2 " " o" v
E, 2 @ " P " "
Eq 5 moogom " "
Eg ‘ 2 ” " 3 " Ll ”
Eyo o " " 3 " " "
Ey 1 " " 3" " "

We might want to restrict ourselves to fixing or breaking only one item at a time. Thus we let
6; and 6, correspond to the rate at which the logic system and memory, respectively, bregk, and .
#y and s to their rates of repair. The diagram shown below is called the “state space of the system.
The possible transitions, assuming single unit breakdown and repair, are indicated by arrows linking
the states.
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State Space of System

The differential equations of the system are:

P
Py
Py
Py
Ps
Py
Py
Py
Py
P
Py

Py =

—(0y + 0p)Py + uy Py + upyPy

~(Of + tpy + 40Py + 0pPy + L Py + upgPg
—(6y +uy )Py + 0, Py +u; Py

~(ug + 0y +0y)P3 + 6, Py +p Ps + Py
—0p +0p +ug)Py +8,Py + upPs + P
—(upr + 1y +0y0)Ps + 0, P3 + 0pPy + 1Py
~(y + 01 )Pg + OyPy + u Py

—(ug +up +07)Py + 6 Pg + 0y Py + Py
~(upp +0p +ug)Pg + 0y Ps + 0Py +u; Py
—(up +uy)Pg + 8, Pg + 8Py,

~(ug + Ou)Pro + 0Py + upPy,

~(upg + O0pg)Pyy + uprPg + 0yP 0.

We could pick for the initial condition (see equations (62) and (65))
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Py = (1,0,0,0,0,0,0,0,0,0,0,0,0)
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After the differential equation is solved, the reliability may be calculated as the sum of the probabilities of
the favorable states (those for which the system works). In this case

' 5
R® = ) PO, (88)

=0

Using a computer, there is no difficulty in solving large systems of linear differential equations, but ex-
treme difficulties can arise in the interpretation of the parameters 6 and u. As used here, they are
clearly average values and do not take into account the intensity of the EMP’s or their frequency. In
any simulation of a real communications node, the 8°s and u’s must be given some sort of time depend-
ence (to reflect the realities of a nuclear attack). Their magnitudes clearly can only be obtained from
experimental work. -

4. STRUCTURE RELIABILITY IN TERMS OF COMPONENT RELIABILITY

4.1 Definition of the Structure Function with Some Elementary Examples

Suppose that a structure is made up of n components. For each /th component we define a
two-value variable x;; x; = 1 implies that the component is functional, and x; = 0 implies that the com-
ponent is not functional. From the n variables x; we define a structure vector x = (x1,x9,...,x,).
Note that there are 2” possible vectors for an n component structure. These 2”vectors naturally divide
into two distinct classes: those for which the structure works and those for which it fails. It is natural,
then, to define a two-valued function of the vector ¥, called the structure function @ (%) such that,

Q(;) = ] - structure works, s0 x is a path for the structure

d)(;) = 0 - structure fails, 5o X is a cut for the structure .

For simple structures it is a straightforward task to write down the structure function, as the
following examples illustrate.

For a parallel structure of n components, the only possible mode of failure is when all com-
ponents fail,

X
X3
; ) n
N . ;@p(:i) =1 -ﬂ 1 -xp. (89)
X,,_, i=]
Xy

For a series structure of n components the only possible mode of operation is when all components are
operable,
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n
Xy ——Xg = —x, ¢,x)= TTx,. (90)

i=]

By judiciously combining series and/or parallel subsystems, it is possible to write down the structure
function for any system. For example, it can be verified that the structure function for

V() = x,[1 - (1 =X 01 = %)l = (1 = x3X1 = x,))

€2))
+(1 = x3)[1 = (b = x32y X1 —x;x,)].

4.2 Combination of Structures

Suppose now that there is an n-component structure described by ®(X), ¥ = (x{, X3, ...,%,).
We note the following identity:

B(X) = x,d(x", 1)+ (1 - x,)d(F", 0) 92)
where X! = (g, X2, oey Xp ). By applying the same manipulation to oG, 1) Aand (X", 0), we find

q@, 1) = X, O(x*, 1, 1) + (1 = x, )G, 0, 1) 93)
and
d(x", 0) = x,., 8", 1,0) + (1 - x,.,)8(x", 0, 0) (94)

where X* = gy X9, .00y Xpy2)
Thus
OF) = x,%, D", 1, 1) + x,(1 - x,.1)9E", 0, 1)

- - (93)
+(1 = x,)x,.,9(x",1,0)+ (1 —x,X1 - x,,)d’(x'f, 0, 0).

By continuing the process we find

ey v ipeem > : R Taaa A S
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S e i s s o i < e At ol

n R
o = 2 1T 57 -x)'”eG) (%6)

y I=1

where 3 ranges over all 2” vectors of length n, and ®(¥)=1ify is a path and () = 0 if ¥ is a cut.

43 Composition of Structures

Another well-known process of building complex structures is the modular approach. One con-

ceives an ncomponent structure and then for some or all of the n components an m-component structure
(module) is substituted. '

If v is a structure of order n and W; is a structure of order ki, i=1,...,n, the composition of
¥, (), wz&), .+ W, (2) into v is defined as x, where
XE 5, ....7) = 4G, () ..., ¥,G)]. ©7
n
~ The order of x isZ k;.

i=1

44 Definition of the Reliability Function for a Structure of
n Identical, Independent Components

Let &(X) be a structure function of order n. Assume that its n components are independent
random variables all having the same probability distributions, P(x),

Px;=1)=p,Ax;=0)=1~-p,i=1,...,n (98)
The reliability function for the structure @, denoted by Rq,(p), is defined as

Ro®) = P[&(F) = 1] = E[®(x)]. (99)
Here E[ ] means to take the expectation value of the quantity enclosed in the parentheses.

As a specific example consider a two-component series structure so that é(x, s X3) = x1X5.
We have

1
Rolpyp2) = 5" xixpp(x), %), | (100)
Xl .x2=0
Since the components are independent and identical p(x,, x,) = p(x,)* p(xi); thus

Ro®) = ) x1p(xy) ) xpley) = p2. (101)

XI.O x2‘0
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For a general ncomponent structure we have from equations (96) and (99) that

n
Re) = E[Z TT="a -x,)"’fd’(}‘)], (102)
y 1 -
n
Ro(p) = ZE[TI' % (1 —x;)"”] (7). (103)

If y is a path for  then ®(3) = 1 otherwise ®()) = 0, thus we need only calculate the expectation
values for/the paths of the structure. If ' is any structure vector then the size of ¥ is defined by

n

s(7) = Z;y,. (104)
= :

The “size” is numerically equal to the number of ones in the vector or simply to the number of working
components in the structure. If a path 3 has size j then there are exactly / ones and n~/ zeros. If the
components are also independent and identical, then

[ﬂ %1 —x,)"”] = o1 - py, . |  qos)
=1 '

If there are 4 j paths of size j, then clearly

n
o®) = )" 4;p/(1 - py'. (106)
i=0
4.5 eliability of Composite Structures

:Jﬁt ® be a structure of order #-and ¥(3), 7 = (’1» +++» Yp), 2 structure of order m. The com-
position of ¥ into ® is x.

X(F15 Vs oo V) = @ L¥G)), ¥(F3), -.0b ¥(FL)). @107

If the y;,i =1, 2, ..., n X m are independent random variables with the same probability distribution,
then

R,(@) = RyIE{¥}] = Ry[Ry ()., (108)

It is of some interest to examine what happens to the structure reliability under repeated compositions
of the structure into itself, Define the iterated composition of ® as




[ERS U

R1(®) = Ry(p)
Ry(p) = Ry [Ry(P)]
: (109)
R®) = Ro[Ry.1()].
Assume that the structure & has the following properties:
Ry,(0) =0
Re(1) = 1
%@ >0 0€p<1
» (110)
Re(@)<p p in some neighborhood of 0
Re(@)>p p in some neighborhood of 1
Rp) =p has only 1 root in the interval (0, 1).

The structures for which the above conditions hold are referred to in the literature us “S-shaped struc-
tures,” since the conditions force the reliability function to have the form displayed in the diagram
below.

11 Re(p)

-]

|
|
|
|
|
|
|
P

0 ReP)=p 1

If p is the root of the equation R4 (p) = p, then by applying the conditions of equation (110) the
iterated composition of & must satisfy

RiP)>Ryp)> - >R+ 0 if p<p
, o (1
RiP)<Ryp)<---<Rp)=1 if p>p.

This demonstrates that one can obtain a structure that works perfectly or not at all, depending on the
reliability of the components.
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4.6

interval

where F

¢, then
time ¢,

Structure Failure Rate in Terms of the Component Failure Rate

The component failure rate y(¢) is the probability that a component of age ¢ will fail in the
(2, t +dr),

0 =34 | a12)

(¢) is the probability of no failure at time ¢.
If we have a structure of n identical independent components described by the structure function

the reliability function, R, (p) = R4 [F(9)], gives the probability of no failure of the structure at
The structure failure rate, denoted by A(?), is defined as

AQ) = Ef['}??:')'] L R, [F()). (113)

Equation (113) can be rewritten as

-1 dR4(p) dF
A = = 20 92 | (114)
Ro®) " | py 91
With the help of equation (112) we have
A0 = s LRG| ey @a1s)

Thus we ffinally obtain

A, , Ro®
10 " P Ry

(116)

p=F(t)

It is apparent that equation (116) will allow us to calculate the structure failure rate, provided we can
calculate the structure function ®.

4.7

tructure Failure Rate for Structures of Nonidentical Components

\L’e now consider the case of a structure made up of n independent components in which the

ith component has probability p(¢) = F}(r) of not failing at time ¢, i= 1, ..., n. If R|p(¢)] is the
structure reliability function, where p(¢) = [y (0), 3 (), ..., Py (1)), then the structure failure rate

Ap) is
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.zl dRIB())
40 REor —ar -
- -1 NO0R() 4P 17
R[P )] op; dr
i=1

which can be written

n
Pt) aR(A[ - :
() = ZR__i(E) _E.ap(:) [F,("lt') 4 p,(t)]. (118)
i=]
From equation (112),
n
ap = ) B 3’5@7,0). (119)

If we define vectors 5 = M@, 7, ..., 7,(1)] and 38 [kl /R(}';)] (P, 9R/3p,, P29R/3p,, ...,
P,9R/dp,,), then equation (119) can be written as the inner product of two vectors

A = B-7. | | (120)
The sig_niﬁca‘hce of equation (120) lies in the fact that Zﬁs a vector which depends only on the structure
while y depends only on the failure rate.

48  Determination of the Reliability Function for a Structure in an EMP Environment

Suppose now that we have a structure &, consisting of many components which are subjected
to random EMP stresses. The problem is to find a method which would allow us to calculate the average
reliability of the structure in much the same manner as in section 2.4. By integrating equation (113) and
solving for R4 (1), we find that :

Ro(t) = exp [— J:A(t')dt']. - a2y

Equation (121) is formally identical with equation (8). Assuming that the components have a discrete
spectrum of failure rates that are known, equation (120) gives us a prescription for determining the dis-
crete spectrum of A for the structure @, Once again we note that the set of failure rates for a com-
ponent could be due to the component existing in a set of electronic states each of which allowsa
slightly different and larger susceptibility to failure when EMP-induced energy is coupled into the com-
ponent. For a very complex structure (for example, an AUTOVON switching center), the number of
values of A may be extremely large and their spacing sufficiently small that we could consider A to be
essentially a continuous function. We shall devote a short amount of space to indicating some of the
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difﬁculticTs encountered in evaluating the average of R given by equation (121) when A is a continuous
function.

o find a solution, we need to backtrack momentarily and discuss another technique for the
evaluation of average reliabilities as given by equation (19) in the discrete case. The basic idea is to
make a transformation that will diagonalize the matrix e AS The tumformationz is defined by

M-+ oT = A (122)

Here ) is a diagonal matrix whose elements are the eigenvalues Npi= 1, ..., q0f -1 *7. Equation (19)
can be manipulated into a form that allows us to use equation (122).

2() = W IT exp G-y + MITT-T (123)
= W-Texp (TN (=y + TITA-T o (124)
= W-Texp QIT1-T (125)
= ) WOy exp NI T (126)

ik
-2 [}: W('r,).l}ﬂ}i‘] exp () 27
o 1.k
= ) oy exp (M) (128)
Thus the average reliability function has been decomposed into a sum of exponentials of scalars multi-

plied by a weighting factor w;. Note that for some simple cases this same form was obtained by using
Laplace transform theory (eq. 39). s

~ We now return to the consideration of the continuous case. The matrix analogous to 2 is now.
A, where R ‘

(41, A7) = A5(4, - Ay). | (129)
Assume that the failure rates A are distributed according to a normalized probability function P(A).
P(4) is the generalization to the continuous case of the vector of a priori probabilities. The T matrix
is given b
T4y, 45) = —0(A)5(4; - A7) + R(8))P(Ay, 8. | ©(130)
Q(A).and|P(A;, A,) have their usual meaning but are now continuous functions.
It is well known that the columns of the matrix,J in equatioh (122) are the eigenvectors 3,

of -3+ associated with eigenvalue ;. Thus to determine T, one first must solve a matrix eigenvalue
prablem for the discrete case..
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In the continuous case it is neoeésary to solve an integral eigenvalue equation

f da,[-A(4,, A,) +12(814,)16(8,) = Ap(4)). : (132)

Substituting from equations (129) and (130) into equation (132),
Q(4;) dArP(Ay, 85)¢(A;) = [A + A + QA1 e(4A). (133)

If a solution to equation (133) exists (a serious difficulty), then a formula analogous to equation (128)
can be written down. Further simplification and manipulation of equation (133) is not very rewarding.
If the functions A, §2(4), P(A), and P(A,4,) are actually determined from some experiment, then the
best approach would be a numerical solution of the integral equation,

5. METHODS FOR CALCULATING THE RELIABILITY OF A COMPLEX STRUCTURE

As we have seen, it is possible to determine the system reliability in terms of the component
reliability for any system. The method we have used is to list each of the possible states of the system,
determine which of the states are paths for the system, calculate the probability that each path is func-
tional, and finally add all the probabilities together and obtain the system reliability. Although this ap-
proach appears quite simple in principle, its applicability is very limited because of the extremely large
number of states possible for any sizable system. For example, a 20-component system has over a
million states. Most analysts, therefore, resort to approximation schemes (ref. 6 through 8) which alle-
viate to a considerable extent the computational difficulties.

5.1 Minimal Paths aﬂé‘Cuts

L b section 4.1 we introduced the idea of paths and cuts for a structure function o(x). If
®(x) = 1, then X is a path for the structure, while if ®(X) = 0, then X is a cut for the structure. The
structure vectors X are either cuts or paths, but not both, so that the vectors are naturally divided into
two classes, the path set and the cut set. If there are p paths and ¢ cuts in an n-component structure,
then p + ¢ = 2", In most cases both p and c are large numbers of the order 27*1, To make the problem
more tractable, the notion of a minimal path set and a minimal cut set can be introduced.

A minimal path Z of a structure & is apath such that

®2) = 1

- 134
() =0 VX<Z. 139

~ The notation x < Emeans x; K Z;foralli=1,...,n;and x; < Z; for some J (at least one). The set 4
of all minimal paths is called the minimal path set. Physically the elements of Z that are 1 (working
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compo

ents) correspond to a smallest set of components that allows the system to function. A repre-

sentation of the structure could be made by imagining the working components of a minimal path to
act in series and the set of all such series structures to be acting in parallel. For each of these series
structures, associate a series structure function a. If there are 7 minimal paths, then there are 7 structure

functio

where t
structur

SQ/.

4 =TT Z i=l...r - (135)
ICA/

he product is over the working components of the jth minimal path.‘ The representation of the

e constructed from the minimum path set is denoted by @,
r
@ =1-T[U-o) (136)
/=1

As an example, consider the bridge structure diagrammed below.

X Xg X4
X, Xg X3
Xq X4
Xg Xg

The series structure functions a,/=1,...,4are

34

o = XXX, a; = x;x3
(137)
y = XoXgXy Q4 = XoX4q.




The structure representation &, is

o, =1-(~ o Xl —ap)l ~a3X1 —a,). (138)

Since the same component appears in more than one path for this répresentation, replications of the
components must always be forced to fail or function simultaneously.

A minimal cut?ofastructuretbisacut such that
*() = 0
) =1 VI>F. | (139

The notation X > ¥ means x; >y foralli=1,..., n; and x; > y; for some / (at least one). The set B
of all minimal cuts is called the minimal cut set. Physically the elements of 3 which are zero (failed
components) correspond to the smallest set of components which by failing cause the structure to fail.
A representation of the structure could be made by imagining the failed components of a minimal cut
to act in parallel and the set of all such parallel structures to be acting in series. For each of these
parallel structures, associate a parallel structure function f. If there are s minimal cuts then there are

§ structure functions '

B =1- ]T a-y) (140)
fOB/

where the product is over the failed components of the fthminimal cut. The representation of this
structure constructed from the minimal cut set is denoted by &,

B ] ’
e =175 - | (141)
A

As an example, once again consider the bridge structure. The representation of the bridge is diagrammed
below. -

, Xy X3
X3 ~X3
- —TXs Xg
X5 )
X5 —Xy—
The parallel structure functions are ’
By = 1-(1 —x;X1 —x,) By = 1—(1-x;X1 - xsXI = x4) 142)
By = 1 —(1—x3)1 =x4) By = 1-(1=x3X1 —x5X1 —x3;)
and the structure representation ¢, is
®; = B1BaB3B,4. (143)
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5.2 Bounds on the Reliability of a Structure

e naturally now wish to consider the relationship between the reliability of the representations
we have defined and the reliability of the structure itself. Our interest in these representat:ons stems
naturally [from the simple forms for their reliabilities. For &,

r .

o, =1 - TT01-P@=1) = (144)
/=1

@=1 =TT » | (145)
ieA,

The product in equation (145) is over the working components of the j th minimal path. Similarly,

s . : , .
oy |1 PG:=D (146)
k=1 ' :
and
G=0=1-TT a -z (147)

ieB)
The product in equation (147) is over the failed components of the kth minimal cut.

e reliabilities Ry L Rg, and R‘,u satisfy the following inequality (for the proof, see ref. 7).
°L<R°<R°u. , o (148)

The equality on the left holds if the structure has a minimal cut set whose elements are mutually disjoint,
for example, the minimal cuts have no elements in common. Similarly the equality on the right holds if
the structure has a minimal path set whose elements are mutually disjoint. For a typical structure satis-
fying equation (110) the various reliabilities have the general form shown below.

-

Structure Reliability

o

Component Roliabili&
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In general, as the component reliability approaches 1, R, L becomes a very good approximation to Ry;
as the components become unreliable, R“‘u is a good approximation to Rg. Since most structures have
reliable components, most of the attention in the !iterktur‘éiis directed toward the construction of al-

gorithms which generate the set of minimal cuts. References 9 through 11 discuss some useful téch-
niques. The interested reader should consult them for further details, ‘ S :

5.3 . Equipment Reliability in Communication Networks in an EMP Environment

Up to now, we have only considered structure reliability in terms of the failure. probabilities of
its components. In communication networks the network.js also considered to be failed between two
terminals if the terminals cannot be connected because the network is busy; hence, the calculation must
be modified to include the conditional probabilities that the various elements of the system (nodes, lines,
trunks, etc.) are busy. A quantity called the network unserviceable probability is thus calculated. When
one has a perfectly reliable network where the paths can never fail, the network is unserviceable only
when all paths are busy. The unserviceable probability is referred to as the blocking probability. Dis-
cussions of some useful calculations are given in references 12 and 13. ‘ e

Usage considerations on a network impose a considerable complication on any calculation, and
most analysts resort to a simulation of the system in order to obtain useful results. Many simulation
studies of the AUTOVON network (whose nodes are going to be stressed by various EMP simulators) have
been carried out (ref. 14 through 17).  These reports describe in detail the various methods of calculation
and the performance of the network.

In spite of our earlier attempts to build models which might have some validity in the calculation
of the reliability of a communication network in an EMP environment, the most promising approach ap-
pears to be a simulation of the network and its nodes. The calculations will include the simultaneous
consideration of EMP upset and damage of nodes and links, network usage, and the inherent failure
probabilities of its elements. The relevant details of the proposed calculation can be found in references
18, 19, and 20.
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