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Abstract

Suppose we are interested in some random variable X such as the
threshold power of a particular type of semiconductor. Suppose we are given
that the population mean value of X is exactly 100 watts, and that the
standard deviation is exactly 50 watts. Suppose that is all the information
we are given about X . Is this the kind of information which would be of
most use to us in deciding what fraction of the thresholds lay between, say,
60 and 140 watts? or lay outside that interval? or lay below that interval
i.e., below 60 watts? This note considers such questions as these. (The
random variable X of interest could just as well instead be the magnitude
of a current coupled into a system, or the margin of safety of a system in dB.)
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Some Observations on the Usefulness of Estimates of
the Mean and Standard Deviation of an Unknown Distribution.

Introduction.

Suppose we know the exact values of the mean and standard deviation
of the distribution of a particular random variable (say of the threshold of
electrical overstress permanent damage of a certa

in type of semiconductor, to
make the example specific).

Suppose, moreover, that we also know in closed
form the pdf (probabi]ity density function) of that distribution.
calculate the fraction of the population (
which will Tie within, say,

Can we then
of thresholds, in the example above)
K standard deviations of that mean?

Answer: Not necessarily.

The majority of this note is devoted to providing an example which
proves that this answer is correct.

But before we get into the details,
notice two things:

If we are given the exact values of the mean and standard deviation
of a distribution, and are guaranteed that they are correct, but we are not
given the distribution (e.g., the pdf in closed form)

together with a guarantee
that it is correct, then we are even less able to calc

ulate such values as the
fraction of the population which lies within k standard deviations of the mean.

And if we are given, not exact values of the mean and standard deviation

of the distribution, but rather estimates of the population mean and standard
deviation, such as values of the mean and standard deviation of a sample,

still without any guarantee of what the distribution (family) is ..
are even le

. then we

8s able yet to calculate how large such fractions of the population
as the above might be,

The Role of Chebyshev's Inequality.

Given that we know p and o, then we can always write Chebyshev's
Inequality:
2

' o
POIX-ul 2 k) < &

I

=
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If for k we substitute ko > g then we can rewrite Chebyshev's Inequality as 'ln‘
(
P(1X-u] 2 ko) < L O
- - k2 '

i.e.,

P(u-ko<X<p+ko)zl—F15 (1)

where X denotes the random variable of interest. Thus the fraction.of the
population of semiconductor thresholds which lies in the interval

(u-ko, u+ko) (2)

k2-1
can be no Tess than 2

Is this helpful? Not necessarily. For two reasons. First, this
(Tower) bound on the probability is usually regarded as rather loose compared

Consideration of the case in which the distribution is known to be Bernoullj

(with p =1 )and k = 1.01 will illustrate this point. In that case

inequality (1) tells us that the fraction of the population lying in (:)
interval (2) 1is no less than 1-[1/(1.012)] = 24 (we might have guessed that
already, without inequality (1) ), whereas the truth of the matter is that

the fraction of the population which lies in interval (2) in that'case is

actually 100 percent. The second reason is, whenever‘ k <1 we observe

that inequality (1) becomes vécuous: it then merely states that the

probability of an event is at least some non-positive number; but we already

know that from Kolmogorov, who tells us that aZz probabilities are non-negative.

For these reasons Chebyshev's Inequality, inequality (1), although
always true if mand o >0 exist and are known (too good to be true already)
and k is positive, may nonetheless not be too useful.

; It should be pointed out that the &ifficulty in making uée of the
mean and standard deviation rests principally in the fact that these numbers,
by themselves, carry very little information about the population distribution;
that their values are never really known perfectly in real world situations,
but can only be estimated approximately from incomplete, noisy sample data, |
although this does exacerbate the situation it is still secondary. For if ' (:) 'E
VA
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restriction to sample statistics X and s were the primary difficy]ﬁy then
we could solve our problem by making estimates usfng the Saw-Yang-Mo

Inequality (cf. “The American Statistician",'May 1984, p. 130), which is a
version of inequality (1) but with & replacing u

» S replacing ¢ , and a
more complicated right hand side.

But no, thevgifficu]ty persists even if
the values of p and o are granted known perfectly, so that inequality (k}
applies directly. The rest of this note is devoted to providing an ex
to illustrate concretely that knowledge, even perfect knowledge, of th

e
mean u and the standard deviation o of a distribution can bevcompletely

inadequate for making some kinds of estimatgs of where the population values

lie ... in some cases even when the distribution (family) s known.

ample

Content of the center standard deviation of the symmetric trinomial distribution.

The symmetric trinomial distribution has pdf

i

p if x=x

(o]

1-p . A ;
f(x) = - if X XA or if x X ta

0 otherwise

where 0 <A and P e (0,1) . A graph of this pdf is:

pdf(x) A
P -
1-p

2

™ ! I —
- +
xO A x0 x0 A X

How might this distribution arise? It could, for example, be the
threshold distribution for é type of semiconductor manufactured by three
vendors, each using a different but very tightly controlled horizontal-vertical
]ayout design (i.e., horizontal geometry vs vertical diffusion profj]e).
(Observe that throughout this note we simplify the examples by assuming that
the random variable of interest, say threshold, is univariate.)
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1
yo= 1J§1xi f(xi) =
1P i
= (x,-) ot x,P o+ (x +p) 173 =

‘In what follows we may assume wolog (without loss of generality)

The variance of this distribution is

(3) 1
= i3;1x$ f(x;) =

G) o1 70 21p
= (0T (opN, 2 L

_ .2 1-p 2 1-p _
B R
_ 2'1-p _

= /Z,A iz?, =

= 22 (1-p)

Therefore the standard deviation of this distribution is

0 = A Vi1-p
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Therefore

P e (0,1) =D 1-P (0,1) <=

0<A
D VI-P e (0,1) g—p

0<A ‘ 4
ED aN1-P e (0,4) <é=%>

(4)
<FD o o« (0,4) <t=p

> 7 e (0,5) b

> 0 < § o< (5) .

ol

SO now we can consider the center standard deviation I s 1.e., the
interval of width exactly one full standard deviation which is had by going

out plus or minus one half a standard deviation from the mean, i.e., the
interval

I = [u-40,pu+1i0] , (6) .

From inequality (5), above, we know that

, 0<A
I=[U“%9U+’§JCEU‘%:U+%]C
0<A
C  [u-4,u+A]

Hence we conclude that the center standard deviation I of the symmetric

trinomial distribution contains the center lobe in the figure near the bottom

of p. 5, above, but neither of the two side lobes.

As a corollary of this conclusion we know that the center standard

deviation I, given by equation (6), contains exactly a fraction P of the
population.

Therefore the interval (2), the value of k € [0,1) being completely

fixed, and the distribution (family) being known perfectly, can contain
any fraction P e (0,1) of a population.
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That is, this example shows that even if we know the popu]étion's
distribution (family) (e.g., we know that it is symmetric trinomial, but (])
do not know P or A ) » then it is still possible to have no idea at alj
what fraction of the population is contained within some fixed number
k ¢ [0,1) of standard deviations of the population mean. (Throughout the
development of the example we have considered k to be fixed at 1 , to

illustrate the point.) Fina]]y, this is true even if it be granted that in
\ addition to the distribution family we also know the mean u and standard
deviation o of the distribution perfectly. '

such as the trinomial can be expected to look like:

I

7 - —D

X

Possibly quite normalish, no? (In facf, observe that with three "bins" data
from a symmetric trinomial distribution would almost certainly "pass" many
standard quantitative GOF (goodness of fit) tests for normality.)

Conclusion.

It is possible that, even if uand o are known perfectly, and we are
given a fixed value of k e [0,1) , we may still be completely unable to say
what fraction of the population lies in (or outside, or on either side of)
the interval [ y - ko , W+ ko] ... in some cases even if the distribution
(family) is known perfectly also ... and this can be so even if the sample
histogram is completely innocuous, the sample passes a normal GOF test, etc.
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Recommendations.

Given sample data on a random variable (such as semiconductor
thresholds), we know how to use order statistics from that sample to compute
nonparametric confidence intervals fof quantiles, either of the Bayes kind
(cf., for example, earlier PSNs, Probability and Statistics Notes, of this
series, e.g., PSN 2) or of the Neyman-Pearson kind (cf., for example,
"Introduction to Mathematical Statistics", by Hogg and Craig, 1978, pp.

305, 306). Therefore if data has been taken directly on the random variable

of interest (as opposed to being taken on "components" of that variable),

and if what is needed is information about the quantf]es of the distribution,
and if it has been decided that only a few summary statistics from the sample
data are all that will be reported rather than publishing the entire sample data
set, then under some ciicumstances the sample size and some Judiciously

chosen order statistics may be considefab]y more useful to the reader than

the sample mean and variance or standafd deviation,

For example, if in the example given in the Abstract wévwere able to
determine that 60 watts was the .2 quantile and 140 watts was the .75
quantile, then we would be able to answer several of the questions posed
in the Abstract. The fraction of the thresholds which 1ie betweeen 60 and
140 watts would then be .75 - .2 = 55% , the fraction outside that interval

would be 1 - .55 = 45% » and the fraction below the interval would be

2 = 20% .

Therefore it may be recommended that strong consideration be given to
reporting the sample size n and the order statistics often used in confidence
calculations, e.g., the extreme value statistics x(l) and x(n) ; then, if
publication room allows, also the median (which‘we might loosely call X(n) )s

2
then, if there is room for a couple more numbers, the first and third sample
quartiles (which we might loosely call x . and x an ). Only after the

n (2N
4 4
reader has been given these values would the sample mean and variance or

standard deviation be given when the distribution is unknown.
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Appendix

If we know of a univariate random variable X only that it is trinomial, then ;
We must learn the values of five humbers before we will be able to specify
completely the probability behavior of X . For example, we could determine
the sizes of the three values of X; where the lobes are located in the
figure near the bottom of p. 5, above, plus the heights of any two of those
lobes. (In general an N-nomial random variable has a 2N-1 parameter
distribution.)

When we gave that we were going to consider a symmetric trinomial
distribution, we were really granting two different kinds of symmetry at the
same time. We were 9iving that the distances from the right lobe to the
Center lobe and from the center Tobe to the left lobe were the same:

0 0 -1 , ;
and we were also giving that the heights of the two side Tobes were the same: (:D

f(x-l) = f(Xl)

By giving both of these two facts about the distribution we reduced the
number of parameters from five to three. These remaining three parameters
could be chosen to be Xy » 4, and P,

Next we granted wolog that Xo = 0, equation (3). This reduced the
number of parameters which we still had to be concerned about from three to
two. (A]ternative]y, in the example in the Abstract we gave that X, = 100
watts.)

Then we offered one more value, viz., the exact value of o (or of o2 ).
For example, in the Abstract example we allowed that o = 50 watts .

However, this was only one value, and we still had two parameters left to
determine. So, for example, we knew the LHS (left hand side) of equation (4);
but that was insufficient to determine the values of both of the two
parameters A and P in the RHS (right hand side) of that equation. So there (:)
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was still one parameter of the original trinomial distribption floating free.
That one remaining loose parameter was sufficient to deraﬁ] any efforts to
determine the fraction of the population which lay in the interval (2).

The foregoing remark also shows why knowing only the mean and
standard deviation of a population (let alone of only a sémp]e from the
population) are by themselves so inadequate for discovering population -
quantiles. These are just two numbers. But the number of parameters of a
real world distribution, such as of the electrical power overstress permanent
damage threshold of a type of semiconductor, can be vastly larger. Not
only the "locations" X; of the thresholds of each of the vendors, to
determine where the lobes are, plus the fractions f(xi) of that transistor
type which come from each of the vendors, to determine the heights of the
various lobes, but also numerous influences within each vendor which affect
the shape (e.g., the “fatness") of each individual Tobe; all these can be
regarded as parameters which have a bearing on the probability that a single
randomly selected semiconductor of that type will have its threshold in
some pre-specified interval (a,b) . Thus the number of parameters for an
actual real world physical variable distribution can be immense. Trying to
describe such a situation by providing only two numbers, say u and o (let
alone just X and s) can therefore introduce severe under—mode1ing.

Another aspect of this topic to notice is that when we assume a
distribution (family), we may be assuming much more information about the
distribution of the random variable than if we Jjust assumed the value of a
single parameter of the unknown actual distribution. For example, if we
Just outright gsswmed that a particular quantile, say the .2 quantile, was
60 watts, then we might not be making nearly as strong an assumption (i.e.,
might not be wishing away nearly as many parameters) as if we assumed that
the threshold distribution was Tognormal. ‘ '

Finally, we can observe that the example in the note shows that we
need under-model by only one parameter to make completely invalid any estimates
which we might subsequently make of the fraction of the population which 1lies
in a pre-specified interval [a,b] such as interval (6).

\
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