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Abstract

The compute code CONLIM evaluates classical upper confidence limits for failure
probability of systems based on component test results. CONLIM can accommodate
systems ranging from the very simple to complex combinations utilizing several different
components. Required input basically consists of component test data (number tested
and number of failures) and the system reliability equation. This report (1) details the
analysis for maximization of the nonlinear reliability function of many variables subject
to a nonlinear constraint function, (2) develops the algorithms used in CONLIM, (3)
provides a users’ manual for the program, and (4) presents program output and
computation times for several hypothetical systems demonstrating the flexibility of the
code.
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CLASSICAL UPPER CONFIDENCE LIMITS FOR
THE FATLURE PROBABILITY OF SYSTEMS

Introduction

Most functional systems represent a combination of many different components
or elements. The systems might be electrical, mechanical, or in general,
any assemblage of small units which makes up a Targer unit. We are con-
cerned with determining a classical upper confidence 1imit for the probabil-
ity of.fa11ure of such systems from test information about the components.
To accomplish this task, we divide the problem into three major parts:

(1) the construction of a set of "hypervolumes" to be used in repeated
computations to evaluate a constraint equation,.(Z) the maximization of

a nonlinear function of many variables subject to a constrant, and (3)

the development of an alqorithm to place the theory into application.

In this report we discuss in deta11 each of these pafts of the problem,

as well as provide an extensive set of appendices covering the use of
avcomputer program CONLIM. Included in the appendices are summarized
tabulations of results obtained from sample test cases, a listing of the
program CONLIM, sample input data formatS and computer output reports, and

an explanation of the variety of options available to the user of CONLIM.




IT.

Basic Equations and Notation

Throughout this report several fundamental notations will be used which

pertain to a system under study and each of the system components.

' These notations are

number of unique system components;

n =
mj = number of performance tests on component i, i=1,...,n;
Xi‘ = number of failures occurring in the tests of component
i, i=1,...,n;
@ = confidence level at which the upper limit of system failure

probability is to be computed.

(IT-1)

The value of n is also defined to be the dimension of the syStem‘undér

consideration,

As described by Steck [1], the classical upper confidence 1imit on system
failure probability is the maximum of the system failure probability func-

tion f(p1,p2,...,pn) where P; is the failure probability of the ith compo-

nent in the system, subject to a constraint. Thus, we wish to find the values

of the independent variables (pT,pE,...,p;) = P* such that f(P*) is the max-

imum function value attainable subject to the constraint that

H(p¥,pgsennapt) = 1 - @ | (11-2)

where

n
mi\ a, m.-a.
H(pqsDpse-+sPp) =Z n(;.)m‘ (T-p;) (11-3)




and ¥ is an apnropriately defined index set of vectors A = (a],az,...,an).
Adopting a proposal of Miiller for specifying a reasonable set ¥ while
avoiding the iterative computations reauired by Steck, we define the

index set ¥ as all vectors A so that f(A) s f(P) where

- _ _ _ ai+1
A= (a1, .,an) > ;= ﬁ;:? ; 0 sa; s m, (I11-4)
- X;+1,
and P = (p],...,ﬁn) ; 51 = =7 - (I11-5)
i
That is,
v={p|f(R) = f(P)} . (11-6)

For example, in two dimensions the index set ¥ would contain all pairs
of integers (a],az) so that the function values obtained by evaluating
f at each of these pairs wou]d_fa11 under the curve f(ﬁ1,52). In this
sense, we sometimes speak of the pairs as noints lyina under the curve
f(ﬁl’ﬁz)' In three dimensions we are dealing with surface functions and

for problems of dimension n > 3 we write in terms of hynersurfaces.

o~



ITI.

Hypervolumes and the Index Set

Theoretically, there is no reason not to evaluate H directly from
(11-3). Practically, the use of (II-3) in the many times that H
must be evaluated results in an unacceptab1y long computér run time
for the maximization search routine. It has proved possible to

develop a more efficient method of evaluating H.

The discussion to follow has three segments. Ue first describe, in an
intuitive manner, the various elemental ideas used in the construction
of the set ¥ utilized for indexing in (I1-3) and the development of
hypervolumes. For those readers interested in hypervolumes only from
the standpoint qf how they relate to the problem of probability function
maximization and not an in-depth analysis, this intuitive approach
should suffice and not particularly detract from the discussions in
later sections. Following this description are a rigorous development
of hypervolumes and their properties, as well as a detailed algorithm

for the index set construction based on that development.

From the simplified example given at the end of the previous section,
we note that in two‘dimensions the index set ¥ would $e composed of
pairs of inteders satisfying the set criteria of (II-6). Given a
specific system failure probability function f, Figure 1 displays
the single failure probability curve f(ﬁ],ﬁz) that might be
associated with the component failure probabilities of b] and 52

described by (II-5). However, the values 51 and B, are dependent



upon the integer values X4 and x, in the numerator of (II-5). Except

in the "trivial" case where Xq = X, = 0, other integer values sub-
stituted for X1 and Xos simultaneously, could produce a function value
coinciding with this curve or 1ocatéd somewhere below the curve.

For the trivial case, only one pair of integers will accomplish this
fact; namely, the pair (0,0). To distinguish the specific test situation
identified by 5] and 52, we make use of a similar notation (II-4) where

these additional integer values may be considered.

i

0 b, 1

Figure 1.

In a sense, the p component values are scaled values of integers.

From this standpoint we can envision the curve overlying a graph

~

of integers or a lattice of integers. Figure 2 111ustrates such a

lattice possible for some particular two-dimensional problem.

10
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For the illustration, the pairs of integers (a],az) yielding function

values, f(é],éz), below the curve would consist of

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0)
(0,1) (1,1) (2,1) (3,1) (4,1)
(0,2) (1,2) (2,2) (3,2) (4,2)

(0,6) (1,6)
(0,7)
(0,8)

In order to express these pairs in a more compact notation, save storage
space within a computer program, reduce the necessary time to determine
all points satisfying (II-6), and develop the constraint equation (I1I-3)
into a more efficient and usable form, we utilize the terminology of
hypervolumes. A hypervolume, designated as HV, can be described simply
as a rectangle, parallelpiped, etc., respectively, as the number of
dimensions increase. Thus, in our example, we can describe all points

ranging from 0 to 3 in a, and 0 to 2 in a, as belonging to the first

11
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hypervolume, HV] = {[0,3], {0,2]}. This rectangle is shown in
Figure 2. A second hypervolume, Hv, ={[0,1],[3,6]} is also shown
in Fioure 2. Notice that we did not touch rectangles, since they
would have overlapped on the two points (0,2) and (1,2). If one
keeps in mind the idea that we want to express lattice points

in a new terminology and that dimension only places an upper bound
on the geometric form a hypervolume can assume, it will not be
difficult to see that a third hypervolume miqght consist of a line,
e.g., HV3 = {[4,4], [0,1]} = (4,0), (4,1), or a sinale point,

v, ={5,51, 10,01} = (5,0).

In this manner, we can include all points of the underlying lattice

in the hypervo]qme form of definition. Upon insuring that there are

no bver]apping points (i.e., maintaining unique hypervolumes), we then
have the necessary index set ¥ of (11-3) whereby the total union

of the hypervolumes compose ¥. The discussion up to this point has
been primarily concerned with two-dimensional situations, but the general
idea of describing clusters of lattice points in a compact form can be

carried through for higher dimensions.

To effectively define and describe a generalized approach of hypervolume
construction and vet implement an algorithm in a practical and logical
sequence, we must undertake a more rigorous analysis. ‘e assume the

notation of (II-1) throughout the remaining discussion.



Definition 1: Given a set of numbers {mT,mZ,...,mn} denoting the number

of tests performed on each component, a choice space X of dimension

n is defined to be the set of all points A = (a], CPINNN an) so that

0 sa;sm, 0 S8, STy, O:sansn”r With the dimensionality of a point
AeX implied, the term point is taken to be synonymous with the term

n-tuple.

From this definition and equation (II-4) we see that ¥cX. As the dimension
increases (i.e., larger systems) and each of the m. also increases, the pro-
cedure to be used in determining the contents of the index set ¥ can

beconie extremely time consuming. Furthermore, ¥ must be constructed so

that repeated evaluations of equations similar to (I1-3) can be made as

efficiently as possible.

N

During these studies, several schemes were devised for the construction
of ¥ to determine the elements Aew Although one approach devised by
Mueller was deemed more efficient than others, having several algorithms
available proved beneficiai in checkina the contents of ¥. lle shall
designate the method of construction utilized for ¥ as the "hypervolume
algorithm." To lay the foundation for subsequent discussion and develop-
ment, we begin the description of the method of construction in a formal

manner.

13



Definition 2: If (al, ees Qs - an) is an n-tuple, then the closed set
of integers along the kth component coordinate for which a, may range is
designated as Rk. Thus, Rk‘is the set of integers ranging from a minimum

value or lower limit, Lk, to a maximum value or upper limit, Uk’ and
R, = [Lk, uk].

Definition 3: A hypervolume HV in the choice space X of dimension n is

defined to be the set of points

HV = }(al, cees ak, v an)‘ alaRl, cees akeRk, ...,~ansRn
A reduced form of notation to be used is

HV = %Rl, coes Ry e Rn; .

From Definition 3, we see that each component a, in an n-tuple has a definite
range of values for a particular hypervolume. In a sense, this range repre-
sents an edge of the hypervolume being described. When taken together with
the other components, the hypervolume then becomes filled with points. The
next three definitions provide us with the means to distinguish between

unique hypervolumes.

Definition 4: The hypervolume HVi indicates the ith hypervolume in the space

and is defined as’
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Let us consider an example where there are two unique components to a
system under study. In examining the components, suppose that 50 observa-

tions were made of the first component and for the second component 47

observations were made. Hence, n = 2, my = 50, my = 47 and X = ;(al, azﬂ

<
Qsa1550,0-azs47§.
With these conditions, we might have hypervolumes such as

HV, = ‘l[o, 2], [o, 3]} or HV, = {{[1, 3], [2, 5]%

There would be 12 points in HV:

(0, 9) , 0, 1), (0, 2) , (0, 3)
(1’ O) 9 ‘(1, 1) 9 (1’ 2) b (13 3)
(2, 0) , (2, 1) , (2, 2), (2, 3) .

Similarly, there would be 15 points in HVZ'

Definition 5: Two points Aq and A, in the space X coincide, Ay =A,, iff

all components of the points are equal.

Definition 6: Hypervolumes HVi and HVj do not overlap in the kth dimension
when Uk(i)< Lk(j) or Lk(i)> Uk(j), We define the symbol Rk(j) // Rk(j) to

denote this relationship..

15
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Theorem 1: If Rk(i) // Rk(j) for any k, then the two hypervolumes HV1 and

HVj have no common points,
HviﬂHVj=Q.

Proof: Consider some point‘AeHVi, A= (al, cees an). Then, by defini-

tion of hypervolumes, a ¢ [Lk(i), Uk(i)] for each k and we have

or

(2) R() 7/ R =L, (1) >V () =3 >y () =3¢ [, (), U (3)].
But a ¢ [Lk(j), Uk(jﬂ = A¢ij and therefore
HV, NHYS = o '

. The theorem shows us that if one questions whether two hypervolumes have any
points in common we need only find a single coordinate in which Rk(i) // Rk(j),

and there will be no common points.

Corollary: Two hypervolumes overlap if there exists at Teast one coincident

point of the hypervolumes.
Proof: Consider two points in the space X,

Aq = (al, cees s eees an) and A, = (ai, e Aps e an)f

Then
Al € HV1. N HVJ.

¢=>A1 € HVi andA1 € HVj

>3 € Rk(i) and a, € Rk(j),. v k

16




<> 3, = a component a, e Rk(j), Vi
<> (al, cees Bps ce. @ ) = (ai, ces af(, vy al)

<= =
a =a,1

PDefinition 7: A hypervolume HV1. is said to be a subset of another hypervolume

HV. iff
J

le(i) < Uk(j) and Lk(i)Z Lk(j) ,  Yk.

We denote this relation by HV1. C HVJ.. We also refer to containment within a

single coordinate k as Rk(i) C Rk(j) so that vk, Rk(i) CRk(j)®HVi cC HVJ..

Note that when HV1. - HVJ., one h_ypervo] ume is completely co.ntained within
another. That is, HV1. N HVJ. = HV].. It may also be the case that the two
hypervolumes are identical. By Theorem 1, Rk(” // Rk(j) for any k =

HV1.¢ H\!j. Let us exgmine situations whereby there may be overlap between

two hypervolumes, but not complete containment.

Definition 8: A hypervolume HV1. is said to be free from overlap at the lower

end in the k-dimension re]étive to some other hypervolume HV:j iff
L (320 (1)U, (3) and L, ()< L ().
We define the symbol Rk(i) Q Rk(j) to denote this relation. -

Theorem 2: Let HV1. and HVJ. be any two hypervolumes inX. If Rm(i) 0 Rm(j)

for one or more m, then redefining HV. so that Um(i) = Lm(j)-1 for any

single m yields HV1. N HVJ. =@.

Proof: Um(i) =,Lm(j)'1'_"'um(i)< Lm(j) =>Rm(1') // Rm(j)

and from Theorem 1, HV1. N HVj =g .}




Definition 9: A hypervolume HVi is said to be free from overlap at the

upper end in the k-dimension relative to some other hypervolume HVj iff
U (1)>U,(3) and L (1) 2U,(3).
We define the symbol Rk(i) 5'Rk(j) to denote this relation.

Note that in the relation Rk(i) ﬁ'Rk(j) there is no restriction on the
location of the lower bound Lk(j),and thus Rk(i) G'Rk(j) cannot be considered
the inverse of Rk(i) Q_Rk(j). That 1s,'Rk(i) 5'Rk(j) allows the possibility

of overlap at both ends.

Theorem 3: Let HVi and HVj be any two hypervolumes in X, If Rm(i) 5'Rm(j)
for one or more m, then redefining HV, so that-Lm(i) = Um(j) + 1 for any

single m yields HV1. N HVj =g,

Proof: Lm(i)

Um(j) + 1 =>Lm(1)3>Um(j)=> &n(i) // Rm(j) and from

Theorem 1, HV1. N HVj N |

The construction of the index set ¥ is based upon the preceding definitions
and theorems. Acceptance of a hypervolume for possible inclusion in ¥ is
governed by the criterion that the hypervolume bounds satisfy Equation (II-6).
By determining all unique hypervolumes under the function surface, HVj,

j=1, ..., M we have



Aligning the hypervolumes along one coordinate axis enables a uniform search
procedure. That is, the minimum value of the first coordinate in each
hypervolume remains fixed at zero, since all hypervolumes must fall under

the function surface and extend from each axis out toward the function

surface.

[ * % * )
{Ll’ s wees Lns

which contains the minimum values each hypervolume coordinate can respectively

We begin the construction by defining a set of numbers L

assume at the most current step in the search procedure. Essentially, these

starred values maintain a log of where a new volume can be located. This

process will become more apparent as we move through the method description.
*

Initially we define Lk = 0, k=1, ..., n. The value LI remains locked at zero

as mentioned above, while all others vary as the construction proceeds.

For clarity in the following explanation, each step in the construction
process is numbered. Branching is indicated at appropriate places for com-
parisons or tests, to take alternative action, or to begin new cycles. The
bounds of a hypervolume are determined by starting at a single point in the
space and then stepping out in each of the coordinate directions to encompass

as much volume as possible and still satisfy the function surface criterion.

Let i indicate the index of the current hypervolume being constructed;

initially i=1.
1. Set Ul(i) to the largest a; for which

*

* * . _
(al, L2, L3, cees Ln) ew, U, (i)>2L, =0.

1
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2. Set Uz(i) to the largest a, for which

* *

. * . *
(U1(1)3 azs L3, L49 Y Ln) eV, U2(1)_>_L2 .

3. Set Uk(i) to the largest a for which

. R * * *

(Ul('l), veus Uk_l('l)s ak, Lk+1, Lk+2, ceey Ln) ey,
*

UkZ Lk with repeated Tooping on k where k=3, ...

1L

. - * - . -— *
4, Set Lk(1) = Lo k—l’...i’ n. Note that L1(1) = L1 0.

At this point in the algorithm a hypervolume has been defined, but may not
be uniquely different from previously defined hypervolumes. That is, this
new hypervolume must be pairwise disjoint with all previously defined
hypervolumes before accepted into the index set ¥ . For this

reason, the hypervolume must be checked against all other hypervolumes

constructed. Holding HVi fixed (i>1), each HVj, j=1, ..., i-1 is compared

coordinate by coordinate. For any given coordinate k, one and only one of

the following relations will hold:

(a). R(i) // R () | (Definition 6)
(b). R (1) < R (J) (Definition 7)
(c). R.(1) O R(J) (Definition 8)
(d). R.(1) 0 R(J) (Definition 9)



5. Looping on the coordinate index k, k=1, ..., n compare hypervolume HVi

with hypervolume HVj for one of the possible conditions described above.

(a). 1If Rk(i) // Rk(j) for any k, then by Theorem 1 HV1. ﬁHVj =@ .

Go to step 6.

(b). If Rk(i) c Rk(j) for all k, then by Definition T, HV, © HVj and HV,

cannot be included in ¥ . Go to step 8.

(c). If Rk(i) Q_Rk(J) for one or more k, then by Theorem 2 we can re-
define HVi so that HVirW HVj = @ . Before redefining HVi we
must insure that condition (a) does not already exist. Thus, all
coordinates in HVi must be compared with those of HVj. From
Theorem 2, only one coordinate in HVi should be redefined. Let m
be the Tast coordinate for which R (i) O R (j). Set u (1) =L (J) -1

and go to step 6.

(d). If Rk(i) 5'Rk(j) for one or more k, then by Theorem 3 we can fe-
define HV. so that Hvif\ ij = ¢ . All coordinates in HV, must
be compared with those of HVj to insure that condition (a) does not
already exist. We may also have the situation where U exists for
one coordinate and 0 for another coordinate. If so, go to 5c.

If not, then Tet m be the last coordinate for which Rm(i) ﬁ'Rm(j)

-~ and set Lm(i) = Um(j) 4+ 1. Go on to step 6.

6. Hypervolume ij is disjoint with ij. Increment j to j+l. If j+l<i

go to step 5 for comparison of HVi with the next hypervolume. If j+1 =1,




10.

11.

22

all comparisons have been made and we have HV_iﬁ HVJ. =g, j=1, .

i-1. Store the bounds of HV., L1(1), cees Ln(i) andlul(i), cees Un(i)

to represent a new and acceptable hypervolume. Proceed to step 7.

With a new hypervolume accepted, the starred variables must reflect

the new minimums acceptable in locating the next hypervolume.

*

* 0 - -
Set L, = Max. {Lz, u2(1)} + 1= Uy(i) + 1.

*

Hold L3, cees L: fixed. L; = 0. Increment i to i+l and go to step 9.

The hypervolume being tested for possible inclusion was already covered.

Set L; = Max. {L;, Uz(i)} +1= Uz(i) + 1. Do not increment i. Go to
step 9.

|
* * * .

If (0, L2, L3, cees Ln) € ¥,go to step 1 and begin construction of the

next hypervolume.

* * * * * . . . *
If (0, L,, Las ves Ln) £V, set L, = 0 and L, = Min. {U3(J)tu3(J)Z:L3,

j=1, ..., i + 1.

Go to Step 10.

s L * to 1. Otherwi set L* = 0 and
If (0, L2 = 0, L3, L49 e e ey Ln) € q’,go 0 . eY‘W'lse, e 3 .
* . ° K3 * l_ 3
Ly = Min. %U4(J)| U4(J)Z Lys j=1, ..., i{ + 1. Go on to step 11.

The procedure continues as described in steps 9 and 10. Looping on k,
*

k=0

k=3, ..., n-1, if (0, L;, o L:) e w,go to 1. Otherwise, set L

* - [ . * -_ .
and Lk+1 = Min. }Uk+1(3)| Uk+1(J)Z'Lk+1f j=1, ..., i + 1.



. . - * 0 ‘ .
Note that if there exists a value Uk+1(3) = Lk+1 we can immediately

define the new Lk+1 without further testing in this coordinate. Check

the new starred point for containment in w .

12. A point will be reached when, through all the searching, L; = 0,
*
k=1, ..., n-1 and (0, O, ..., O, Lk) g¥ . The next logical step would
*
be to define Ln = 0, but this returns us to the very first starting

point. Hence, the construction has been completed with i-1 hyper-

~ volumes in V¥.

In the construction algorithm, we note in steps 9, 10, and 11 that there
exists at least one value Uk(j) so that Uij)z L:; namely, the most
reqent upper bound determined in this dimension as so defined in steps 1,
2, or 3. Furthermore, since it may well be that this most recent upper
bound is equal to L; and tﬁe new L: could be immediately defined without

further checking, a descending search with j=i, i-1, ..., 1 is most expedient.

As remarked earlier, several different approaches were planned and written for
the construction of ¥ . The advantages in doing so were twofold. First, in-
sight aﬁd understanding of the probjems of construction were gained which
ultimately led to the method of hypervolumes. Questions such as how to
present the index set most uniformly and concisely for explanation, how

equations could most effectively be redesigned for efficient evaluation, and
how systems of differing dimensions and sizes could be compared were more

easily answered.

The other advantage in having different approaches was the ability to check

the components of index sets for various systems. The method of construction

23




used in comparison testing was one in which all the n-tuple components
were found one at a time. This method can be described somewhat analo- o
gously by the operation of an odometer. That is, each coordinate assumed
a "régister" position. A1l registers started at zero and operated from
right to left (nth coordinate to 1st coordinate). A coordinate register
value would increment until reaching the criterion function acceptance
value, at which time a pointer moved to the next register in sequence and
the previously used registers would restart at zero. This search method
continued until all registers had moved to their maximum acceptable limit.
During each step the current register readings were recorded and thus the

total nétup1e readings made up the index set.

Tests were performed on various systems ranging from two to six dimensions,
and one system of nine dimensions. In all instances, the index sets con-

structed by the hypervolume method were exactly the same as those constructed

by the register method.

Apart from the comparison checks, other tests were performed. Defining the
number of failures found in each system as zero (i.e., X; = 0, i=1, ..., n,)
several different systems were analyzed and each index set was determined.

As desired, each set did consist of the single n-tuple (O, 0, ..., 0).

Another type of checking done was to consider subsets of index sets. Given
a particular system with some number of failures input, x., i=1, ..., n, a
corresponding index set was found. Then by reducing the number of fai]ure

values input, other index sets were determined. In each case tested, the

24



smaller index set was completely contained by the larger set. This test
was repeated several times for the systems ranging from two to six

dimensions, as well as for the nine-dimensional system.

A slightly different approach was to select some n-tuple within a given
index set as input to the system under consideration. As expected, the
new resulting index set in each case was a subset of the original set and

included all of the proper n-tuples.

The use of hypervolumes presents a concise and uniform method of describing
the index set ¥ . As will be seen in the following section of this report,
the most important feature of the method of hypervolumes is the very effi-

cient manner in which complex equations such as (II-3) can be evaluated.

25-26



Iv.

Nonlinear Function Maximization

The problem of finding the maximum of a nonlinear function of several
variaples with nonlinear constraints is well known in numerical analysis.
Considerable attention has been given to the minimization of nonlinear
functions and several different approaches have been proposed [2]. Although
normally posed in terms of minimization, by making a few minor changes
the methods apply to meximization as well. In nearly all of the techniques
proposed, the partial derivatives of the given function to be'maximized,
with respect to each independent variable, are necessary to provide input
as to the direction of greatest change [3] and as a measure of the conver-

gence process [h].

Considering the fact that we are concerned with probability functions
involving several-to-many variables, f(pl, cees pn}, the requirement for
partial derivatives becomes rather undesirable. This undesirability is
further magnified, since the user of the general CYNLIM computer program is
responsible for supplying the function to be meximized. To circumvent
these difficulties, we propose a modified univariate method; i.e., changing

one variable at a time.

Since pboth f and the p values are probabilities, they must satisfy

the conditions

0< f(pl, .., P ) <1 (TVv-1)

and

For ease of illustration, dlagresms supplied will be in terms of only
two dimensions, but the theory and application hold for higher dimensions
and have been used in this context. Hence, in two dimensions we can view
the function £ as a family of curves dependent upon the two variables
pl and Py Figure 3 i1llustrates a possible configuration of the function

curves and the constraint curve H(pl,pg) =1 -~ ¢. We search for the point
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at which the curve H = 1 - & is tangent to the curve f.. The value of

fk is then the confidence limit we are seeking.

The search is initiated from the point

- - — _ Xy + 1
P = (pl, ey pn) 3 Pi = m s Xi < mi H
i

(1Iv-2)

By using Steck's iterative procedure [ 1] for an index set, one obtains the
global meximum function value. But we wish to avoid an impractically long
iteration process to determine this set, Differing from Steck's approach,
we admit tie points in the set ordering. The starting point P was chosen

by Milller to direct the search toward a maximum judged to correspond most
closely with the global. However, the search routine could conceivably
find a local maximum rather than the global maximum. When this occurs, it
is as though we are saying that the index set generated is not producing the

ordering we want and we effectively reject (or ignore) those points in the
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ordering which would create a global maximum elsewhere. The contribution
of those "global" points at the local maximum is very small, so the value
of the local maximum is affected very little by whether they are, or are
not, a part of the ordering. This has the unsettling aspect that we
cannot precisely define in mathematical terms the ordering we are using,
but the ordering is uniquely and precisely defined by the computer
algorithm. The point is that any definite, repeatable ordering will
produce a valid system of confidence limits, and we have such an ordering
Judged to be, if anything, somewhat better than the implied ordering

identified by the index set.

With reference to Fig. 4, the procedure of maximization to be used
will first be briefly described for an overview and then discussed in
detail. Note that initially the 51 values are held away from the end

(boundary) conditions so that O < Ei < 1.

Figure L
The computational complexity of the H function and the extreme amount

of time that would be required for many evaluations of H preclude moving

along the curve H = 1 - o to find the maximum of f. Consequently, we have
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followed the suggestion of Miiller and "inverted" the maximization procedure.
From the initial point P we move to the 1 - g constraint curve along a line
intersecting P and the origin. In so doing, the point PI = (Pl’ ooy Pn)I
on the 1 - o curve is obtained and we then calculate the corresponding

function value f(PI). A step of appropriate length, 51, is taken to the

point ﬁI along a constant f curve (i.e., fI = f(PI) = C), in the direction
of increasing H values. From ﬁI we return to the 1 - @ curve at the point
PII directly away from the origin. Since H is monotonically decreasing
away from the origin while F i1s monotonically increasing away from the
origin, the new point PII will have a larger_f value thag that for PI;
i.e., f(PII) > f(PI). Thus the general direction of new point placement
is toward the interior of the envelope formed between H = 1 ~ o and fI.
After determining fII’ the nextvfunction curve to be held constant, the

same procedure is repeated. This iterative process 1s continued until a
step with fixed § is found to produce a corresponding H value less than

the H value before the step was taken; i.e., until the step places the

next point outside the current envelope and beyond the intersection of the
constant 1 - g and f curves. The step size 1s then reduced to 62 = 61/2

and the iteration continued. When the step size has been reduced to some
value ék = 5k_l/2 < lO-d, where d 1s the number of digits at which the
variables p; are to be affected by the steps, the entire procedure is
halted. Through this inverted method the function f evaluated at the

last point, P*, on the H = 1 - o curve produces the desired maximum of

the function. The number of evaluations of H required by this approach

is significantly reduced since H is only computed in each cycle to establish

direction and to return to 1 - o from the constant f curves.

Keeping in mind the procedure just described, we now detail the
equations and formulation necessary to carry out these operations. During
each part of the iteration, we select some point %j = (%i’ vy gn)j away
from the 1 - o constraint curve that increases theAvalue of H and places
us toward the center of the envelope. FEach point Pj is fo:ced to maintain
a constant function value fj; i.e., movement to the point Pj is along the
fj curve. To enable such a movement,we place a restriction on the system,

and thus on the function f. Each component of the system can be described
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gs connected in scrics or parallel with the other components. The systen

is restricted in that it muct contain at Jeast one series connucted

o+

component.

H
=
=
|_'.
[
\Ji

, let ¢ represent the failure probability eccumulated
over n - 1 components, and 28 represent the fallure probability of & single
zeries component. We simply remarl al this point in the discussion thsat
when Ltére cxicts more than one scries compoﬁent in the syutoem, thai P,
represents the serics component probebility of greatest value within the

immediate step cycle. The subscript n is used to distinguish that componcnt

R
)

tle corresponding valuc from the remainder of the system, and dozc not

Q.

n

m

]
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ssegrily indicate the final system component. For clarification and
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t
2parately in each cycle as the "slack” component since it 1s zssentially

¢
®

o

ged to take up the slack in holding to & constant I curve.

(n -1

FORNE

!
{
Comps . | _ p
|
l
i

Tren the fallure probability of the system becomes

f=1-[(-a0( - pn)].
(Iv-2)

H

G+op (1-6)

Incrementing a parallsl component bty a relatively lsrge step valus

wn

produces approximately the same function incrementation as when a cerie
component ig only elightly modified. Hence, twO separate step vslues, &

for series components and 6p for parallel, are maintained. A too-small
initial step would result in many cycles of maximization and increased com-
puter time, and a very large start might overstep the envelope and possibly

influence the direction of movement, initially, away from the maximum. In

ure refercnce, we shall henceforth refer to the series component concidersed
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terms of an optimum first step size, experience has shown the initial

step values to be best defined as
65 = E pi 10 n, ép z\/és

The series components are affected, at most, in the second decimal place
and parallel components in the first or second place, depending on the
average 5 values. In the following discussioh, the step size will always

be referred to in the generic sense, §, with the actual value used assumed

dependent upon the component designation.

Starting on the constraint curve in the jth iteration (j =1, ..., M)

with a given point Pj = (pl, ey pn)j,we calculate the intersectin% function
value f(P,) providing the "constant" curve along which & new point P, =

(ﬁl, cees ﬁn)j is to be found. The veriable p ., is modified by somé step ‘ (_
value 6 so that gn—l = P71 + 5and all other variables, P> i#n-1,

are left unchanged. From the series restriction on the slack component we

can insure this step to fall on the "f-constant" curve by using (IV-3) to

give

A
_ f(Pj) - Q(PI)PE) e Ipn_l)
n 1 - Q(leng ) f)n_l)

g >

(TV-1)

Hence, the slack component takes up the difference necessary to maintain
A
f(Pj) and assumes the value p .
A A .

The function H is evaluated for (pl, Doy +++s Py pn). Should it
be the case that we have violated the boundary condition (IV-1) or that H
has decreased, the value of the slack component is set back to P, and we

A

try to step in the opposite direction, p =D - &. A new value for
A n-1 n-1 ] -
p_ is obtained from (IV-4) to hold to the curve and we again check this <
n
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value. Provided that (IV-1) is satisfied and H has increased, pn_1 becomes
A

fixed at the new value Pl = pn_ldza. If (IV-1) is not satisfied, ﬁn_li P_1"
The univariste process continues by adjusting the next component

pn_g,with §. Modification of the slack component is again made to placc

the search point on the constant curve and (IV-1) is checked. However, we

are also sefking to position the completely stepped point ﬁj at the greatest

value of H(Pj) that ian be obtained within the § step limit. Before

sccepting the value P o = pn_2 * § for this component, a comparison is

made with the previously held position and we find that

A A

. A
= ) -
AHn_2 H(P1)P2J v Pn_gypn_l)Pn/

A

A
H(Pl:Pz) cee Pn_z; Ph-1? Pn)

Based on this calculation the following selection is made:

5 if AH 20
n

Ppp -2

i O
P if Hn-2 < 0

Taking one coordinate at a time, the iteration proceeds until all n - 1
components have been incremented, decremented, or left unchanged. At each
step along the way the slack component is modified to hold the moving point
on the constant curve, and also at each step the boundary condition (IV-1)
is checked and a comparison made on the H function increase. In general,

we can summarize the component values by

A

- i
\ piiéiin>l-Cx3/_\_Hi20;Ospi$l;OSanl
b =

Py otherwise (TV-5)
i=1, ,n -1
and % _ Ap-1
n - Pn >
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where the designation Ai above the slack component denotes that 1 has been

modified i times, as described in the text and as seen in (IV-4).

Although not obvious at first, one can see that if the same
series component is held fixed as the slack component throughout the
entire maximization procedure there exists the possibility of exhausting
whatever magnitude and contribution that component may yield. In the
situation where one component must continually be forced to maintain the
difference to follow a constant curve, a resuitant zero pfobability would

halt the procedure since there would no longer be values to use as slack.

Stopping at this point would quite possibly result in an erroneous solution.

Also, concern that an undesirable bias in movement could result from a
single slack component leads us to the position that all series components
be considered for the slack role. The condition that a sizable adjustment
might be necessary to remain on a constant f curve dictates the slack

component to be the largest series component going into a step cycle. This

component is held as slack through the complete step cycle, but then allowed

to be reconsidered after a return is made to the 1 - o curve.

Upon the completion of the univariate step procedure, a new point

A A
.Pj = (ﬁl, ceey pn)j has been found so that

f(lgj) = f(Pj)- and H(lgj) > H(Pj) . (Iv-6)

With the point éj fixed, we can determine another point, Pj+l’ on the
curve 1 - g whose T value is greater (and therefore closer to the maximum)
than f(Pj). To do so, ﬁj and the origin are aligned as shown in Fig. 6.
The next point, P
H function.

3417 is calculated via a first-order approximation of the
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~0 1
1 P1
Figure 6.
A
Hence, for H(P) > 1 - qa,
A ) A
p; =2 +(p; - p,)
. A - Iv-
R (Iv-7)
— o ——
= Py 2 AP,
where
n 1/2
A 2 > 20 ;
8 = pk . ' (IV‘B)
. k___l .

From equation (II-3) and the form of H, we have

e/, 4 1 A AA i1 ‘
H(F) = Z “(al)@l * f’i _QE> <l TPy TPy —f) - (TV-9)
v i=1 7
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Expanding the first factor,

a a.

A A i A a. a. A a._l A A 1
Ap) ™ _ i 1 i o, op -
(pi + D, B) =p, ¥ (1 )pi D, ; + + (Pi 3 . (1v-10)

Similarly, expanding the second factor of (IV-9), we have
mTey m, -a m, -a m.-a,-1
A A A . . . . A 3 -- A
_ AD ~ ) i1 ( i 1X _ ) i1 AP
(l Py TPy -g) ) (l pi) AU MR P; 3

(Iv-11)

A mi—ai
8

By discarding all terms involving Apg and higher orders in (IV-10) and
(IV-11),the two factors become

a, a.-i a A\ -a, A me=a.-1 n
AT ATi Ap - 11 - - . Ap
P, *agp, p. ][(l pi)r + (m; - a;)(1 - p,) P. l

1B * 1 -8
A (-12)
A 2. A m.-a, a, - mp
i A i i~i
=Pi1(1'Pi) 11*‘;“) &
1 - Py
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Expanding the second product of (IV-13),

A A
n a. - mpP a, - m, P,
A i A
TT 1+ 1? _————jfL' =1+ ?F 2: —3;———%r£ + 2: Cross Product Terms
i=1 : 1- P i=1 - P
1 - i (IV-]_LL)

Ignoring the cross product terms and substituting (IV-14) into (IV-13)

gives
A
H<P>~zsn(‘““a- s el )y Gey LN
~ l \ey)p; i 1-F +'§EE: A ‘
v [i=1 i=1 1 - pi
nr A n n
oz sl (5]
- H(E) + £ 3,
where

B:% ﬁbi' i ci | (IV-16)

A
b, =(mi) P.%1 (1 . p.)mi-ai ; (Iv-17)
1 ai 1 1
A
a, - m,P, ,
R (Iv-18)
. 1- P
1

The goal of this approximetion is to obtain H(P) = 1 - ¢, so that

1 -aq-= H(ﬁ) + %? B
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yielding
A
1-a) - H(P
Ap = (1-9) = (2) B . (Iv-19)
Substituting (IV-19) into (IV-T) gives
r| (1-g) - B
p; = Py * pi[ (1-) = () ] . (Iv-20)

Equation (IV-EO) is also used to make the first step adjustment from

the initial point estimate, P = (;l’ cee En)’ to the constraint curve
provided that H(P)>1 - a. However, it may well be the case that this point
lies above the constraint cufve; i.e., H(P)<l - o. In this situation,

equation (IV—?) should be modified to reflect the opposite direction:

But by substituting -g throughout the eguations derived, we agaln obtain
equation (IV-20). Equation (IV-20) is valid for both situations, since the
denominagtor term B is negative in each case.

As in many other methods of maximization (minimization) there may
arise the problem of oscillation with no progress made toward the maximum
sought. Simply stated, this situation would occur when the step process
becomes trapped on a curve, f, and an oscillation i1s encountered with slack
components alternating or 'vying" for directicn control. >In this situation,
there are more than one local maximum, but only one such maximum appropriate
for the system un@er study.

For example, a family of f curves containing a ripple or wave effect
could lead the maximization procedure to "stall out" in that each new try

to step to a greater £ function value via (IV-20) only results in
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positioning thé new point on the opposite side‘of an f curve wave wall.
As different slack components are utilized repeatedly to hold to this
f curve it is evident that Several paths to maximum values may exist.
The immediate problem then becomes one of selecting the proper path to follow
for the given system.

To recognize an oscillation, we maintain a survey of the pattern of

slack components being used and, when a specific pattern is found to be re-

peating r times, a check on progress is made. If sufficient progress toward

a maximum is taking place, then we do not want to interrupt the process but
allow it to continue making progress, On the other hand, if very little or no
progress is being made, then a junction exists and the different_branches must
be explored; 1.e., we must force the maximization process to follow each branch
path.

Let Py s k=1, +o. , K represent the components being qsed in the
slack fole at the time of oscillation detection. The criteria for sufficient
progress is established by examining the probability values of the slack
component Py held over this oscillation period, pgi),-i =1, ees , T,
Remember that after any component values are modified by &, an adjustment
is made through(IV-QO)b&ck to the constraint curve. If each value held by
Py during the period did not change more than one-half the current step

size, &, then we indicate that a nonprogressing oscillation.has occurred.

That is, when

Ip§i+l)"P§l) <8/2 ,1i=1, ..., r-1. (Tv-21)

hY

This situation dictates a slightly different approach to reach a

global maximum. -All p values, the current function value f, and the current H

value are saved at the junction point and each path is then separately
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followed through the maximization procedure but with a fixed slack component

for each path. The process is illustrated in Fig. 7

junction —
point

maximization
movement

~Figure T.

Each point P* » k=1, ... , K reached is the maximum point satisfying
(II-2) along the respective K paths taken. For the first path, slack
component 12 is held as the only slack choice and no other components are
considered for the slack role. The same ﬁrocedure is followed for each kth
path with the kth slack component fixed for that path. Each time a

*
P maximum is obtained, the maximization procedure restarts at the

k
Junction point by picking up the saved junction values.

In the computer code, CONLIM, all P; values are provided on output
and the finalselection of the "true" global maximum is left to the
discretion of the code user. This method pérmits the user to consider the
system structure, as well as any other exterior conditions, in making the
selection. We note that in using CONLIM, the user has thé option to not
pursue any paths but rather to stop the problem at the junction point.
Primary motivation for such & choice 1s the additional computer time necessary

to complete the problem which would need to be weighed against the desirability

of solution.
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Hypervolumes and the H-Function for Maximization

In a previous section, hypervolumes were defined and developed to
form the index set Y. As the size of V¥ increases,the time to evaluate
equations (II-3) and (IV-16) also increases. This time increase becomes
magnified by the fact that larger systems reguire more evaluations of
these two eguations. Aside from the desire to be able to express v com-
pactly by means of hypervolumes, the other primary motivation for using
hypervolumes is to facilitate‘fhe most efficient and rapid evaluation of
these two major equationms.

Expressing equafion (II-3) in terms of summation over hypervolumes gives

M
H(P) =Z Z ﬁ (‘:1) piai (1 - pi\} T8 L (v-1)
j=1 1 i/ :

hetlV, 1=

Over each hypervolume HVj we can fTactor the summation and product to

obtain a reduced form so that
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where min, .
1J

max., .
1J

minimum value of ith coordinate, jth hypervolume;

maximum value of ith coordinate, jth hypervolume.

Let us consider an example of application using equation (V-2). Suppose

that we have a system with n = 3 and examine a single hypervolume with the

following coordinate ranges:

coordinate min value max _value
1 0 2
2
3

The hypervolume contains 24 points. If we use only the binomial

coefficients as shorthand representation for complete terms, then by (V-1)
§ : I I m\ (m m m rn\ ) -
AQHV‘j i=1 . /

whereas the representation for (V-2) would be

(1) - 139 + (29 ] o) - )+ G < o)) )

(v-14)

i=1 k=m1n1j

The arithmetic operations to be made in each of these equations are

summarized in Table I,
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Table T

Type of Operation

Number of Operations Necessary

Equationv(V-3) Equation (V-4)
Exponentiation 144 18
Multiplication 192 20
Addition 23 6

A similar but somewhat more involved factorization of equation (IV-16)

can also be made. In terms of summation over hypervolumes (IV-16) becomes

R L A
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Over any single hypervolume,HVj,we can rewrite the summations and

products so that

n
z m a, =
"1\ o, i [1 - D, m, - oa; }: 8, - mp,
ASHV =1\ | i1t TPy
n n max, .
Ld
m k -
- l E : 1]p 1-p )™ B
= k i i i2 (V—6)
2=1 i=1 k=min, .
1J
where mini!j = minimum value of ith coordinate, jth hypervolume;
maxij = maximum value of ith coordinate, jth hypervolume;
and </
1 if 14
514 k- mp, (v-7)
T - pi if i = £

Note that in (V-6) and (V-7) the function 61& has no relation whatsoever
to the step size § used earlier in the discussion. The step function 61{ is
necessary in (V-6), since we are concerned with a product/sum combination
over hypervolumes rather than a product-only operation. EQuation (V-6) has
the feature of being able to use the hypervolume information available
without intermediate steps of hypervolume component regrrangement necessary

for equation (V-5).
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The most illustrative, nontrivial example for comparing (V-6) with

(V-5) is a two~dimensional system where the hypervolume coordinate min-

imums and maximum have the following values:

coordinate min wvalue ‘ max value
1 0 2
2 0 1
k - m.p.
ivi
Let Cik = ToT and

k
"4 resent [ "4 P l-p mi-k
k| TP k)P4 i

Then by (V-5),

M
—

(V-8)‘
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From (V-6),

(v-9)

Equations (V-8) and (V-9) can be shown to be comparable by collecting
like terms in each.
Assuming the iy terms can be evaluated once and then inserted in the

equations wherever needed, we summarize the number of operations necessary

to complete (V-8) and (V-9) in Table II.

Table II

Number of Operations Necessary

Type of Operation
Equation (V-8) Equation (V-9)

Exponentiation 2L 20
Multiplication 36 27
Addition 11 7
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Without writing the expansions, we find the number of operations
necessary to evaluate (V-3) and (V-6) for the first example summarized

in Table III.

Table III

Number of Operations Necessary

Type of Operation
Equation (V-5] Equation(V-6)

Exponentiation biuh - - 54
Multiplication 216 69
Addition 71 ' 20

In ell of these equations, some of the operations can be avoided
by storing similar terms for repeated use. This is particulerly true for
the exponentiations that must be performed. But clearly, for larger
hypervolumes and larger systems the chasm between the number of
operations necessary to evaluate (V-2) and (V-6) as opposed to (V-1)
and (V-5) increases subétantially.
Computationally, the evaluation of the binomial coefficients can be
accelerated by
(1) éelecting some integer N, computing n! once for each integer
n=1, '°° , N, and storing these factorials in an array
for ready access. whenever needed;
(2) approximating the binomial coefficient involving

integers greater than N.
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The value of N chosen is dependent primarily on the exponent range of the

computer being used. OFf secondary consideration is the size of the integers
to pe encountered in most problems; i.e., the number of component tests

that will normally be made and the size of N covering most values.

Rewriting the binomial coefficient in terms of gamma functions,we have

ny\ _ n. T'(n+ 1)
R e

Stirling's formula [57] for an approximation to the logarithm of the gamma

function is

. ,
tinT(n) ~(n-2)4nn-n+354n2nm+ on - (v-11)

Using the logarithmic form (V-11) in (V-10),we find

ny _ n+1 n-r+1 1 n+1
'In(r)—nm(—-————-———-n_ r+,1)+ r]n(——-——l—r+ )+/z1n{(r+ R

¢ (1~ sinzn) + oyt T) = 0+ 1)2 (v-12) :

2(n + 1)(r + I){n - r+1) °
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Combining the numerator and denominator terms of (V-10) into a single
operation preventskexponent overflow that might occur should each term be
evaluated separately and thén a division be attempted. This is particularly
true in the situation where thevalue of N has been selected to permit as
great an exponent range as possible for calculating N!.

In some problems it may be that the initial starting,poinﬁ P is so
far above the constraint curve H, H(P)<<l - o, that the first-order
approximation (IV-EO) cannot provide a sufficient Ap correction to even
place the next point in the vicinity of the constraint curve. This
condition can’be likenedlto one of t;ying to determine the root of an equation
through the Newton-Raphson methbd. it is well known that should a poor
initial guess be used in starting the iteration, the method can place the
next step completely away from the root to be found. The first-order

approximation in (IV-20) reacts in a very similar manner. Fig. 8 illustrates

the situstion that can arise.

H < 1-a Region
___~—£<:::;E " ///;{’

%\
0 \

Figure 8
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The propcsed improvement places the point Pl in violation of the
boundary conditions imposed upon the variables.

By eliminating the higher orders from the approximation to simplify the
resulting equation (IV-12), the contribution necessary from the higher ordered
terms to prevent "overshoot" was also eliminated. Hence, approximations
involving second- and third-ordered terms were derived to examine what
improvement could be made. In light of the tremendous number of
calculations needed to evaluate these approximations and after some
preliminary trials of use, it was decided that although improvement of ﬁhe
approximation could be made the time involved to do so was prohibitive on
any problems beyond the very simple.

Guided from experience in the problems of root-finding, we chose to
use a method of bisection in moving to a more advantageous starting point.

We know from the nature of this problem that the initial point falls in
the vicinity of a maximum f value but for some other constraint curve.
Because the constraint curves have relatively similar characteristics
of behavior and do not intersect, we sought a more reasonable starting

point along a line connecting the initial point supplied and the origin.

Let us define

>
]

0 H(0) - (1 -a) >0,
HP) - (1 -a) <0,

>
—
1]

>
i}

; H(PJ.) - (1 -4q) for j=2. (v-13)
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We consider the sequence of points which lie halfway between the previoue
two points producing A values from (V-13) ofopposite signs. The sequence is

described by the equations

(AV".H-‘ )
= - L - f . , . o
= + L . - . f . . . D «

(v-15)

Each step requires that a new H function be evaluated and in our pre-
vious discussion we have seenkthat this can become time consuming. Hence,
bisection is continued via (V-14) and (V-15) only until a point is found
within a region of the constraint curve for which the more expedient
approximation can be used. The criterion established for choosing a stopping

point Pj+1 is when

| 1Ajﬂ] =31 -0 . (V-1€)

Since the method and the equations utilized to obtain a maximum value for
function under the prescribed constraints have been described, the entire

procedure is reduced to algorithmic form in the following section.




VI. Algorithm for Nonlinear Function Maximization

This algorithm assumes prior construction of the index set Vv in

terms of hypervolumes,as detailed-in Section III, necessary for

s evaluatioﬁ éf va:ious éguations presented in Section V.

1. Determine the initial starting point P - (El, 52, ceey EQ by Eguation
(IV-2) and calculate the corresponding function value H(P) as expressed
in Equatibn (v-2).

2. From Equation (V-5) calculate the value of B‘which; when substituted

into (IV-20) togethér with H(P), will provide the necessary ap shift
value to yield the first point PI on or nqarlthe constraint curvg
(Ref. Figure b4). Determine H(PI) by Equation (v-2).

3. Test the valiéity of the values (pl, P, ...,pn)I. If 0 <p, <1 for
all k, k=1, ..., n, we have an aqceptable point on the‘constraint
curve. GO to step 5.
If Py < O or pk z 1 for any k, k:;, +.., n, then the initial starting
point P was too far removed from the constraint curve and we would over-
shoot the problem boundary conditions. A more reasonable starting point
must be found. Go to step b,

4L, For the method of biéeﬁfion, determine a new starting point i by using
Equations tV-l3, 14, 15). Repeat the calculations of steps 2-4 until the
cfiterion of acéeptance for the biéection (V-16) has been met.
Deferminé the point PI én o% near the constraint curve as described
in step 2 and,upon completion,lprocéed on to step 5.

5. Calculate the intersecting function value f Thus, the envelope of

T
enclosure for the next point ?I has been formed. Also‘determine the

initial increment values 55 and 6P for series and parallel components,

respectively. (Let the generic term § represent either 55 or 6P

according to the component application). Go to step 6.
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Determine the series component to be selected to serve as the slack
component for the current step cycle. If specific branch paths are
dictated as a result of a detected oscillation, slack component has

been fixed so go to 7. For no oscillation yet detected, go on to 6a.

(a). Check step movement. If oscillation is taking place, go to
6b. If no oscillation, go to T.

(b). TFor oscillation between components, test sufficiency condition
(IV-21). Go to T if sufficient progress. Otherwise, & junction
exists and if user indicates a continuation of maximization, go
to 6c. If user indicates a halt at a junction, print out diagnostic
message with all pertinent information.

(c). For maximization along several branches, flag all slack components
involved in the oscillation as separate branch paths to be
followed. Also save junction point data for the restart of each
path.

Define ﬁn-l = + 8.

pn-l

(a). 1If ﬁn_l < 1, continue to 7b. Otherwise, ﬁn_l > 1,which violates

the boundary restrictions. 1In this case, go to step 8.
(b). The slack component, ﬁn’ is defined by Equation (IV-4) to maintain
s A A
a position on the f, curve. Thus , ﬁI = (pl, vees Ppor Bpqs pn).
A
If H(ﬁI) 2 H(PI), go to step 10. Otherwise, the point P, has

been moved beyond the envelape and we go to step 8.

. A
Try the opposite direction. Define p ., =P, _; - 6.

A , , : A )
(a). If p,_, > 0, continue to 8b. Otherwise, p _, < O,which also

violates the boundary restrictions. In this case, go to step 9.
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10.

11.

12.

13.

(b). Follow the same procedure as step 7b to determine %n' If

H(ﬁI) > H(PI), go to step 10. If not, then ﬁI is outside

‘the eﬁvelope and we go to step 9.
The component Pq could not be incremented or decremented with the
currently fixed step size §. Define ﬁn—l = pn-l and ﬁn =D, Proceed
to step 1C. |
Looping on i, i=n-2,..., 1, modify each component 1] by §in the
manner described in stepé 7 and 8 and in Equation (IV-5). Upon
completion, the final point ppsition ﬁI has been determined.
(a). If any of thé components, p;, were modified by § then calculate

u(P

I) and go to 12.

(o). If it was not possible to modify any component ;s =1, ..., n-1.
by & and stay within the criteria of movement, a smaller step
size must‘be used. Go to step 11.

Reduce the step size, 6i = 65/2, 5; = Jggi eturn to step 7.

As described in step 2, use Equations (IV-20) and (V-5) to calculate

the necessary values to produce the next point on the constraint curve.

Go on to 13.

Follow the same procedure as detailed in steps 6 through 10 to deter-

- mine the next point ﬁj' Provided that the criteria placed upon P, are

satisfied (H(ﬁj) > H(Pj) and boundary conditions met),return to step 12
to determine Pj+l' Thus begins an iterative pfocedure, j=1, 2, vv. , M,
in locating the meximum value for the function f. If it wes not possible
to modify any of the components of Pj without viqlating a part of the

criteria, go to step 1k.
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1k,

15.

16.

o6

The § step size was too large for the current envelope of containment

k+1

and must be reduced, és k+l.

S

"

k k+1
55/2 and 6p = V8

With some number of decimal places, d, of accuracy prescribed for the

serlies components, check 5§+l.
+ -

(a). 1If 55 LS 10 d, go to step 13.
+ -

(b). If 55 " < 107%, go to step 15.

Convergénce criterion has been met and the final point P* =

* * '
(pl, oo pn) = (Pl’ ceey pn)M established so that
M
* *
(P ) = Max. f(P,) ; H(P ) = l-a.
s ' J
J=1
Test on branch paths.

(a). If no oscillation is indicated, maximization procedure has been

completed as described in step 15.

(b). If oscillation is indicated, branch paths are being taken. If all

branch paths are exhausted, maximization procedure is completed.

Otherwise, return to step 7 with a new fixed slack component for

a new path to be followed.
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VII.

Conclusions

The material presented in this report is not.the‘last word in efforts
to arrive at new ideas and methods of solution for‘the problem posed:
confidence limits for System failore probability. Certainly, major progress
has been made by taking a theoretical eguation with seemingly unfathomable

computational roadblocks into the realm of real-life application.

Methods of checking the hypervolume construction have been described
in Section III. Summaries of the various systems considered in testing the
methods proposed are presented in the appendicés, along with system‘diagrams,‘
initial parameters, resultant failure probaoilities at different confidence
levels, the size of related index sets, andrthe amount of computer»time needed
for solutions. Theee test systems not ooly ser&e es toe "shake-down'" of the.
computer code, CONLIMA but also indicate the nature of problems that can be
analyzed and the directions for usage of CONLIM.

As described by Wllde [6], one of the prroclpal indicators of preferred
optimization occurs in the greatest possible interval of uncertainty to
obtain the maximum value sought. Furthermore, a sequentlal search using
preV1ousiy drscovered 1nformatlon can greatly a551st 1n the search process
of meximization. By enc1051ng the 1nterva1 of search within the boundary
enveiopes described in Section IV, we actually utilize a sequential process
in each successive step,and as a result, the 1nterval of.uncertalnty for

maximization is narrowed with each step.

Several factors appear to be critical when a system for analysis is
considered. None can be considered independently, but must be viewed in
conjunction with each of the other factors. All are an integral part of

the system complexity. The first and most obvious factor is the size of
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the system and the number of unique components making up the system. Not
only does the index set increase in size and scope, thus requiring a longer
construction period, but the maximization procedure also must take into
consideration more variables to be examined. The conditions of iteration
and convergence apply to all components and thus the time for solution to
the problem becomes lengthened.

Secondly, the arrangement of components can be a factor in the amount
of time required for a solution. We have obsérved that systems containing
many series-connected components require more time for solution, as opposed
to systems made up of several parallel combinationms.

Another factor must be considered in relation to the arrangement
scheme and the dimension of the system. Parameters input to the problem
include the number of failures X i=1l, ..., n, that were found in m
i=1, ..., n, tests performed on each component. In the case of a series
component and, to a lesser degree, of a parallel component, the higher
the failure rate the more critical that component becomes to the system.
The function criterion for hypervolume acceptance enlarges as the ratio
xi/mi increases for any ith component. This means a larger space under
the surface to be filled by hypérvolumes; the greater the number of hyper-
volumes, the greater the amount of computation to be done in evaluating

the various maximization equations.
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Of course the amount of time required for the computation of predicted
failure probability should be considered. Only in special cases would an
expected poor system even be considered for use. We must hold as the final
criteria for using any technigue the importance of the system and the accuracy
of prediétion desired. In those instances where a question of the glonwal

maximum arises as a result of branch paths, we clearly indicate the possible

choices available without hesitation.

The use of hypervolume construction for the index sets and the method
presented for function maximization open the door for analysis of systems
ranging from the most simple composition to those of a complex, many-
component structure. We cannot overemphasize the possibilities of appli-
cation to the myriad of differing types of'systems. Aside ffom the appli-
cation to new systems under considerat%on, this approach permits a standard
of comparison for previously used or proposed approximational methods of

failure probability analysis.
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APPENDIX A

SYSTEMS UTILIZED TO STUDY AND TEST CONLIM

Diagrams for each of the test systems are given in this appendix.
In many of the tests, several different input parameters are provided
for comparison checks on resultant values.. The probability functions, T,

describing each system are also provided.

The appendices following are related to this appendix via the
identification of system number and test number subordinate to each

system.
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n

Test 1

20 , x

20 , x

Test 4

ho , x

ho , x

SYSTEM 1 (2-D)

my
.
£f=p +p, (1-

Test 2
=1 m1=140,xl=
=1 m, = ko , X, =
=3
=3

=h0,x

Test 3
bo , x



Mt

(I Wl ol S0 1 B

n

Test 1
20 , x

20 , X5

20 , x

Test 4
Lo , x

bo , x

4o , x

1l

L]

SYSTEM 2 (3-D)

—_

f =

20

PPy + Py (1 -

Test 2
Lo , x

._F'r .

=40 , x

3
I

Lo , x

n

M3
plpg)
Test 3
2 ml=,+0,xl
2 m, = ho , X,
2 m3=1+0,x3
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SYSTEM 3 (3-D)

£=1-(1- pl)(l - p,)(1 - p3)

~Pp T P2 P3

Test 1
m1-20,xl-l
m2-15,x2—0
mB—IO,XB—O
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SYSTEM L (4-D)

oy ny
—_ m, I—
3

£21-(-p) 10y (e + 5, - )]
Test 1 | - Test 2 v Test 3
30, x; =1 my = 20 , xl = 12 m. = Lo , x, =2
20,x2,=l ,m2=v,30,x2-l m2=60,x2=2
25 , x3 =1 m3 =25, x3 =1 m3 = 50 , x3 = 2
2o,xh=l mh=20,xh=l mh=ll-0,x)+=2
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SYSTEM 5 (4-D)

-

f=1- [(l - pl)(l - p)(1 - p3)(l

Test 1 | Test 2
m, = h9‘, X, = 0 m, = L8 , X,
m, = 41, x, =1 | Imé =41, X,
m3 = 23 , x3 =0 ‘J m3 = 23 , x3
m, = L8 , x, =5 - m, = kg , X),

L

H [} o




SYSTEM 6 (4-D)

m, m3
—— my m,
m, m3
f=p, + (1 - ph) £
2
o - -

Test 1 Test 2 Test 3
ml_ho,xl-l ml=h0,xl=l ml=ho,xl
me_so,x2_2 m2=50,x2=l m2=50,x2
mh—EO,xh_-O m)+=20,x)+=0 m)+=20,xl"
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SYSTEM T (5-D)

8
(]
=
(@]
ol
]



SYSTEM 8 (5~D)

£e1- (- 2)0 - 2 - 2 - B - By)

Test 1 Test. 2 -
ml—SO,xl-O ml=50,xl=l
m2=50,x2=0 m2=50 x2=0
m3=50,x3:0 m3=50 x3=0
mh=50,x,+-0 mh—-SO X)+=O
m5=50,x5=l ’m5=50 x5=0
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SYSTEM 9 (6-D)

"

Test 1
m1_=20,xl-l
m2=25 x2=0
m3=30 x3=l
mh=25 xh-l
m5=20 x5=l
m6=’40 x6-0




1L

SYSTEM 10 (9-D)

my

t

g

x M6
s
 (
g
ﬂL-{
s

[ m

6
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SYSTEM 10
( CONTINUED)

4
£=1 .'_\-T(l - p;) | (2 - po)(1 - pg) {l ) (l ) [1 ) p5”1 ) p6p7])2}

i=1

“zy (1 - py) %1 - (Ps + - Psl P7ﬂ

+ pg (1 - p9)§l-(Ps + [1- pslps)Q}

Test 1 Test 2 Test 3 Test &
ml=l+l+,xl 0 m1=hh,x1-0 m1=l&h,xl=0 nl=l+k,xl-0
m, Sh,xe—o m2=5h,x2-0 m2-5h,x2=0 n2=5h,x2-1
m3-30,x3=0 m3=30,x3-0 m3-30,x3—0 m3=30,x3=0
mh=101,xh—0 mhlel’xh'—'l mh=101,xu-0 m1+=101’x'+'°
m5_=32,x5=1 m5=32,x5-1 m5=32,x5=2 m5=32,x5-1
m6=23,16=1 m6=23,x6=l m6=23,x6=3 m6-23,x6=l
m7=32,x7=l m7=32,x7=l m7=32,17-2 m7=32,1r=1
mg =43 , xg =1 mg =43, xg =1 mg =43, xg=3 mg =43, xg=1
m9=17,x9=0 m9=17,x9=0 m9=17,x9=0 m9=17,19=0 (




APPENDIX B

INDEX SET COMPOSITION AND CONSTRUCTION TIME
OF CONLIM TEST SYSTEMS
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Index Set Composition and Construction Time

Index Set ¥
System Test
No. of HV No. of n-tuples time (secs.)
1 1 2 7 0.001
2 2 8 0.001
3 3 19 0.002
L i 32 0.003
2 1 12 89 0.009
2 34 543 0.041
3 33 sek 0.040
L 22 - 295 0.023
3 1 1 2 0.001
4 1 65 1243 0.107
2 69 1243 0.115
3 Lk 1540k 2.42
5 1 39 109 0.045
2 39 109 0.043
6 1 10 Ly 0.010
2 10 Lk 0.009
3 1 1 0.001L
T 1 583 6061 6.88
8 1 5 6 0.004
2 5 6 0.004
9 1 373 2848 2.52
10 1 L 183 0.38
2 433 2451 11.5
3 675 3726 23.2
L 1665 8912 119.3




APPENDIX C

CONLIM RESULTS OF SYSTEM TESTS
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a=0,80 a=0.90 a=0,95 @ =0.98 a=0,99

System | Test | f value time f value time f value time |[f value time f value time
1 1 0.14226 0.02 0.18095 0.03 0.21606 0.03 |0.25878 0.03 0.28820 0.03
2 0.07288 0.02 0.09378 0.03 0.11311  0.03 [0.13733 0.03 0.15104 0.02
3 0.10382 0.05 0.12763 0.06 0.14915 0.07 |0.17540 0.06 0.19401 0.06
4 0.13372 0.12 0.15960 0.11 0.18273 0.12 |[0.21054 0.15 0.23004 0.14
2 1 0.14243 0.33 | 0.18095 0.34 0.21602 0.34 |0.25177 0.32 0.28877 0.39
2 0.10402 1.68 0.12769 1.82 0.14921 1.95 |0.17546 2.36 0.19406 2.18
3 0.10397 2.36 0.12764 1.97 0.14916 2.15 |0.17541 2.20 0.19402 2.36
4 0.07427 2.11 0.09503 2.09 0.11439 2.12 |0.13851 2.31 0.15588 2.33
3 1 0.17026 0.03 0.22809 0.03 0.26451 0.03 | 0.33026 0.03 0.37584 0.03
4 1 0.14243 3.80 0.18096 6.47 0.21611 6.27 | 0.25879 4.66 0.28879 4.84
2 0.14243 3.64 0.18096 6.41 0.21611 6.26 | 0.25879 4.27 0.28879 4.66
3 0.10412 63.5 0.12779 44.1 0.14931 60.7 | 0.17555 61.7 0.19416 63.2
5 1 0.19772 6.32 0.23480 6.26 0.26793 6.77 | 0.30750 6.92 0.33500 8.18
2 0.19772 5.79 0.23480 5.97 0.26793 6.32 | 0.30750 6.50 0.33500 7.84
6 1 0.08120 1.37 0.11760 2.58 0.14272 0.94 0.1811] 1.01 0.21357 1.45
2 0.08120 1.40 0.11760 2.56 0.14272 1.08 | 0.18111 .06 0.21357 1.46
3 0.07419 0.07 0.10719 0.08 0.13668 0.08 | 0.17280 0.07 0.20488 0.09
7 1 0.14316  89.9 0.18165 87.7 0.21677 81.5 | 0.25941 78.5 0.28939 72.7
8 1 0.05870 0.83 0.07558 0.79 0.09140 0.93 [ 0.11119 0.88 0.12552 0.90
2 0.05870 0.83 0.07558 0.79 0.09140 0.92 | 0.11119 0.87 0.12552 0.90
9 1 0.09655 64.3 0.12357 63.1 0.14860 64.4 -0.17950 64.4 0.20159 81.4
10 1 0.05221 12.1 0.07388 13.1 0.09503 13.4 | 0.12226 14.8 0.14230 13.9
2 0.05400 197.5| 0.07561 236.9 | 0.09672 210.0| 0.12390 194.8 | 0.14391 224.3
3 0.05418 348.6| 0.07578 365.1 | 0.09689 399.1] 0.12407 639.4 | 0.14407 728.5

4 0.05972 1789

NOTE:

A11 times shown are in seconds
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APPENDIX D

EXAMPLES OF INPUT DATA
AND CONTROL CARDS FOR CONLIM

The specific data input structure for CONLIM is detailed on the first
two pages of Appendix F in the computer code listing of CONLIM. Each data
card is described, and the particular format arrangement for each card is
also pro#ided. Users of CONLIM are directed to those two pagées for refer-
ences, as well as to the sample decks listed in this appendix.

We note that for systems of dimension greater than 8, the user must
perform a minor modification to CONLIM. Two cards, CONLIM 117 and CONLIM
118, must be replaced since the limiting dimension automatically accom-
modated by CONLIM is set at 8. The reason for this dimension wvalue is only
to maintain CONLIM at a compﬁter memory eore requirement less than 100,0008
words and in no way reflects upon the capabilities of CONLIM. The card deck

structure from one of the sample tests described in the preceding appendices

(System 10) is presented in this appendix to demonstrate the necessary mod-

ifications.

In addition to the numerical input data, the user also has the responsibil-

ity of éﬁpplying the function QTHETA (PROB), which describes the reliability

function of the system under study. PROB is an array which must be dimensioned

N, the size of the system. Examples of such functions are included on the
following pages. Both QTHETA and PROB are probabilities in terms of system

failure and component failure, respectively.
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SYSTEM]l9T===4CM100000+ECe==~" . ' IDENTIFICATION
ACCOUNT yGmmmmmman cyDemmeyGommmyAercnccnyReyKaom,
ATTACH+CONTAP s CONLIM,

_ ' In thils .example, the progranm CONLIM resides 1n
gg:tg:[gg:::f&t?gi. a permanent file in binary form. The function
REWINDLGO1 J _ deck 1s compiled and collected to the program
_ * for execution.
PREP.LGOvaTHE., '
COLLFCTsLGOsFTNLIB,QTHE 4
LGO.
7/8/9
FUNCTION QTHETA (PROB)
c .
C PARALLEL SYSTEM = LIKE COMPONENTS - TREATED AS 2-D CASE
C
DIMENSION_PRQB (2)
A = PROR(1)#pROB(1)
QTHETA = A + PROB(2)#(1.0-A)
RETURN :
END
7/8/9 - - blank option: standard output
PARALLEL SYSTEM -~ LIKE COMPONENTS - TREATED AS 2-D CASE (EXAMPLE 1)
2
20 20
1 1
1 0
0,8
0,9
0.95
0.98
0.99
0999
1/9/9 - option 1: intermediate printout
PARALLEL SYSTEM - LIKE COMPONENTS = TREATED AS 2-D CASE (EXAMPLE 2)
2 o
40 40
| R |
1 0 '
0.8
069
0.95
0.98
0.99
0.999
7/?/9 - option 3: 1llst hypervolumes
PARALLEL SYSTEM - LIKE COMPONENTS = TREATED AS 2~D CASE (EXAMPLE 3)
2 .
40 40
2 2
1 0
0.8 NOTE: 7/8/9 represents standard
0.9 CDC 6600 EOF card
0.95 ,
0.98 . 6/7/8/9 represents standard
0.99 CDC 6600 EOI card
0.999 _
7/8/9
6/7/8/9
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SYSTEMT9T===sCM100000+EC=-==+MT1.

IDENTIFICATION

ACCOUNT Srecccccns=, DecccyGreccjcccnnan, ReyKoo=,

REQUESTsTAPE3sHI.
REWIND.TAPE3.
ATTACHsCONTAPsCONLTM,
COPYBF ¢« CONTAPLGO, .
FTNeB=LGOlsLsOPT=1,
REWIND.LGO1.
PREP+LGOL+QTHE,.

COLLECTOLGOCFT~LIB!QTHEQ

LGO.
UNLOAD+TAPE3.,
EXIT.
UNLOADTAPE3.
7/879

FUNCTION OTHETA(PROB)
DIMENSION PROBI(S)

CONLIM 1s maintained 1n a permanent flle., 1In
this example, a magnetic tape 1s requested to
save the hypervolume structure for subsequent
runs. Note that permanent files, rather than
tape, can also be used for this purpose. The
manual detalling the use of permanent files

should be consulted for creating/cataloging a
permanent file.

Pl = (1.0=PROB(1))%*(1.,0-PROB(2))
P2 = (1. 09PR08(3))*(1 0-PROB(4))
OTHETA = PROB(S) + (1.0=-PROB(5))*(1.0=-P1)%(1.0=-P2)

RETURN
END
7/8/9 <

Option i=1l; Save hypervolume

PARALLEL SYSTEM=FIVE COMPONENTS

[-N-N-J

8
9
«95
0.98
0.99
0.999

- 7/8/9

6/7/8/9

structure (more than one set
can be submitted and more than
one structure saved)

30 20
1 1
1 0

NOTE: 7/8/9 represents standard
CDC 6600 EOF card

6/7/8/9 represents standard
CDC 6600 EQOI card
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SYSTM1Q¢T=e=9sCM1200009ECa==, IDENTIFICATION
ACCOYNT s Semmcmemce DececnyfomemyjAcccaccnyReyKan=,
ATTACHeOLDPLsCONLIMsCY=1. )\ The dimensions of the pro
: gram CONLIM must be expanded
UPDATE ¢+ P=OLDPL oF « for thls run and two cards of CONLIM are modified.

REWIND«COMPILE, (Note: increase in core memory required) This infor-
FTNeI=COMPILE+LsyOPT=]. mation and the function deck are submitted via the

COLLECTsLGOsFTNLIB, UPDATE system of the CDC 6600, UPDATE sourcé of
LGO. » CONLIM 1s taken from cycle 1 of the permanent file
7/87/9 as shown.

# IDENT CHANL _

#DELETE CONLIM.1169CONLIM.117
DIMENSION NFMAX (99500) sNFMIN(99500) ¢ NFMAXX(9+5S00) sNFMINX(S¢500)
DATA IVSJIZE/S500/+1IVCOL/9/

#INSERT CONLIM, 1600
FUNCTION OTHETA (PROB)

S C } '
c TWO CHANNEL - TWO OPTION SYSTEM
(o

DIMENSION PRQB(9) - *IDENT identifies this
PARTL = (1.0-PROB(1))#(1.0-PROB(2))#(1.0-PROB(3)) modification to UPDATE

P8 = 1.0-PROB(8)
P7 = 1.0=-PROBI(T7) : ¥DELETE deletes two
P4 = 1.0=-PROBI(4)

cards and replaces them

P56 = (1.0 = PROB(S)*PROB(6)) with the cards followlng

P456 = P4#PSE

= - - & -
z:§$§ = ;gﬂp;.;§§$2 P4S6)* (1.0 = P4sé) *INSERT places the cards
PART4 = 1.0 - (PROB(4) + P4#PROB(6))%#2 (functlon deck)
PARTS = PROB(8)*#P7#PART4 _ immedlately followlng
PART6 = 1.0 - (PROB(4) + P4#PROBI(5))##2 ' the CONLIM routine
PARTT = PROB(7)#P8#PART6 ' _ proper
PARTS = PART3 + PARTS + PART7
THETA = 1,0 - PART1#PARTS
QTHETA = PROB(9) + (1.0-PROB(9))®#THETA .
RETURN
END
7/8/9 P . blank option:
o ’ standard output
TWO CHANNEL - TWO OPTION SYSTEM
9 .
54 30 ' 101 32 23 32 43 17
44 .
1 0 0 1 1 1 1 0
0 1
0 0 0 1 1 1 1 1
0
0.8 .
0.90 NOTES: The data cards contalning
0,95 : the number of tests,
0.98 fallures, and classifica-
0.99 ' _ tion are each contlnued
0.999 to second cards.
7/8/9 :
6/7/8/9 : : 7/8/9 represents standard

CDC 6600 EOF card,

6/7/8/9 represents
standard CDC 6600 EOI card.
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APPENDIX E

EXAMPLES OF OUTPUT RESULTS
USING VARIOUS CONLIM OPTIONS

Each of the input data options detailed on the first two pages of
the CONLIM listing in Appendix F results in various forms of output and
information. This appendix demonstrates the multitude of output forms

resulting from these option selections by the uset. Should CONLIM pre-

maturely stop as a result of exceeding the designated time limit for the

computer run, a brief printout of pertinent information is supplied from

CONLIM prior to the rum exit.
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TIME REQUIRED TO DETERMINE INDEX SET AND HYPERVOLUNES +001 SECONDS
HYPERVOLUME CROSSCHECK BYPASSED |

TIME REQUIRED FOR FIT PROCEDURE = «019 SECONDS

Standard first page of results which appears at the start

of each new set. For multiple @ values only the time for the
fit procedure is supplied after the first since the hyper- .
volumes will have been determined previously.
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PARALLEL SYSTEM - LIKE COMPONENTS = TREATED AS 2-D CASE

SYSTEM COMPONENTS
NUMBER OF TESTS AND FAILURES

1 2
20 20
1 1
ALPHA UPPER CONFIDENCE LIMIT = «8000
SYSTEM FAILURE PROBABILITY Q = .1422641E+00
NUMBER OF HYPERVOLUMES IN INDEX SET = 2
TOTAL NUMBER OF NTUPLES IN SET = 7

INDIVIDUAL COMPONENT P VALUES ARE AS FOLLOWS

+7096878E=-04
«1422641E+00

—
nu
n

Standard output of results - for the standard (blank option
card) run this will be the only page printed in addition to
the t1m1ng pages.
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I = 1 PHAT(I) = «4761905E-01

I = 2 PHAT(I) = «4761905E-01

HVALUE STARTING OFF DELTAP = «26153023E+00

I = 1 PHAT(I) = «5284574E-01 QHATI(I) =

I = 2 PHAT(I) = «5284574E-01 QHAT(I) =
HVALUE AFTER DELTAP SHIFT = «205653418552E+00

QP VALUE AFTER DELTAP SHIFT =

COMPONENT
DEL VALUE TRIED
I = 1 PHAT(I)
I = 2 PHAT(])

COMPONENT
DEL VALUE TRIED
1 = 1 PHATI(I)

I = 2 PHAT(D)

HVALUE STARTING
I = 1 PHAT(D)
I = 2 PHAT(I)

HVALUE AFTER DELTAP SHIFT =
QP VALUE AFTER DELTAP SHIFT =

COMPONENT
DEL VALUE TRIED
I = 1 PHATI(])
1 2 PHAT(I)
COMPONENT
DEL VALUE TRIED
1 1 PHATI(])
1 2 PHAT(D
COMPONENT
DEL VALUE TRIED
1 PHAT(I)
2 PHAT(I)
COMPONENT
DEL VALUE TRIED
1 PHAT(I)
2 PHAT(I)
COMPONENT
VALUE TRIED
= 1 PHAT(D)
2 PHAT(I)
COMPONENT
VALUE TRIED
1 PHATI(I)
2 PHAT(I)
COMPONENT
VALUE TRIED
1 PHAT(I)
2 PHAT (D)
COMPONENT
VALUE TRIED
1 PHAT(I)
2 PHAT(I)
COMPONENT
VALUE TRIED
1 PHAT(I)
2 PHAT(I)
COMPONENT
VALUE TRIED
1 PHATI(I)
2 PHAT(I)
COMPONENT

—
nn
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m
Hur
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(Option 1 selected - intermediate output)

«5284574E-02

= «5284574E-01 QHAT(I) =
= «5284574E-01 QHAT(I) =
2 USED TO MAINTAIN CONSTANT
= «2642287E-02
= «1442557€-02 QHAT(]) =
= «5548886E-01 QHAT(I) =
OFF DELTAP = «34107094€E+00
= «1813208E-02 QHATI(I) =
= «6974620E-01 QHAT(I) =
«221418001683E+00

«2642287E=-02
«1813208E-02 QHAT(I)
«6974620E=01 QHAT(I)
2 USED TO MAINTAIN CONSTANT
.1321143E-02
.1813208E-02 QHAT(I) =
«6974620E-01 QHAT(I) =
2 USED TO MAINTAIN CONSTANT
+6605717E-03
.1813208E=-02 QHAT(I)
«6974620E-01 QHAT(I)
2 USED TO MAINTAIN CONSTANT
.3302858€-03
.1813208E-02 QHAT(])
«6974620E-01 QHAT(I)
USED TO MAINTAIN CONSTAN
.1651429E-03
.1813208E-02 QHAT(I)
«6974620E-01 QHAT(I)
USED TO MAINTAIN CONSTANT
.8257146E=-04
.1813208E-02 QHAT(I)
<6974620E-01 QHAT(I)
USED TO MAINTAIN CONSTANT
<4128573E=04
.1813208E~02 QHAT(I)
«6974620E~01 QHAT(I)
2 USED TO MAINTAIN CONSTANT
.2064287E-04
.1813208E-02 QHAT(I)
«6974620E=01 QHAT(I)
2 USED TO MAINTAIN CONSTAN
.1032143E-04
.1813208E-02 QHAT(I)
«6974620E-01 QHAT(I)
2 USED TO MAINTAIN CONSTAN
.5160716E=-05 _
.1813208E-02 QHAT(I)
.6974620E-01 QHAT(I)
2 USED TO MAINTAIN CONSTANT

n
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«9471543E+00
«9471543E+00

«554908261854E-01
2 USED TO MAINTAIN CONSTANT Q

¢9471543E+00
¢9471543E+00

«3985574E+00
«9445111E+00

«9981868E+00
«9302538E+00

«697492598601E-01
2 USED TO MAINTAIN CONSTANT Q

«9981868E+00
«9302538E+00

«9981868E+00
«9302538E+00

«9981868E+00
«9302538E+00

«9981868E+00
«9302538E+00

«9981868E+00
«9302538E+00

«9981868E+00
«9302538E+00

«9981868E+00
«9302538E+00

«9981868E+00
«9302538E+00

«9981868E+00
«9302538E+00

.9981868E+00
+9302538E+00

S
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DEL VALUE TRIED

(

.2580358E-05
«9997931E+00

Option 1 printout continued with the time requirement
printed after the intermediate output.

I = 1 PHAT(I) = «2068588E-03 . QHAT(]) =
I = 2 PHAT(I) = «69T74922E-01 QHATI(]I) = «9302508E+00
HVALUE STARTING OFF DELTAP = 022179892E+00
I = 1 PHAT(I) = «2161293E-03 QHAT(I) = '«9997839E+00
I = 2 PHAT(I) = = ,7287508E-01 QHAT(]) = 0e9271249E+00
HVALUE AFTER DELTAP SHIFT = «200887018676E+00
QP VALUE AFTER DELTAP SHIFT = - ,728751201759E-01
COMPONENT 2 USED TO MAINTAIN CONSTANT Q
DEL VALUE TRIED = =~ .2580358E-05
I = 1 PHAT(I) = «2161293E-03 QHAT(]I) = «9997839E+00
I = 2 PHAT(I) = «7287508E-01 QHATI(I) = ¢9271249E+00
COMPONENT 2 USED TO MAINTAIN CONSTANT Q :
DEL VALUE TRIED = «1290179E-05
I = 1 PHAT(I) = «2161293E-03 QHATI(I) = «9997839E+00
1 = 2 PHAT(I) = «7287508E-01 QHAT(I) = +9271249E+00
TIME REQUIRED FOR FIT PROCEDURE = «114 SECONDS

)
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(Option 2 selected - determine hypervolumes only)

PARALLEL SYSTEM = LIKE COMPONENTS - TREATED AS 2-D CASE

'SYSTEM COMPONENTS
NUMBER OF TESTS AND FAILURES

1 2
40 40
1 1
ALPHA UPPER CONFIDENCE LIMIT = 8000
HYPERVOLUME ONLY OPTION SELECTED
INDEX SET DETERMINED VIA OPTION 2+ ALPHA = «9000 BYPASSED
INDEX SET DETERMINED VIA OPTION 2, ALPHA = 9500 BYPASSED

The option is indicated and since the fit procedure
was to be bypassed, so also are any other o values
in the set. Hypervolumes need only be calculated
once for the set. :



(Option 3 selected - Tist hypervolume structure)

HYPERVOLUME STRUCTURE WITHIN INDEX SET PSI

NUMBER OF HYPERVOLUMES IN INDEX SET = 2

TOTAL NUMBER OF NTUPLES IN SET = 8
#a#VOLUME 1
J = 1 MIN(Y) = 0 MAX(J) = 5
J = 2 MIN(J) = 0 MAX(J) = 0
##3#VOLUME 2
J = 1 MIN(J) = 0 MAX(J) = 1
J = 2 MIN(J) = 1 MAX(J) = 1

standard output and/or intermediate output would

(\The structure is listed prior to any other action -)
follow.
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(Options 2 and 3 selected - determine hjpervo]umes and'1ist)

PARALLEL SYSTEM - LIKE COMPONENTS = TREATED AS 2-D CASE

SYSTEM COMPONENTS
NUMBER OF TESTS AND FAILURES

HYPERVOLUME ONLY OPTION SELECTED

INDEX SET COMPOSITION PREVIOUSLY |LISTED VIA OPTION 3»

INDEX SET COMPOSITION PREVIOUSLY LISTED VIA OPTION 3, ALPHA

88

1 2
40 40
1 1
ALPHA UPPER CONFIDENCE LIMIT = «8000
ALPHA =

«9000 BYPASSED

«9500 BYPASSED

A11 hypervolumes would be. printed as shown on the prev16us page.
However, processing of the set will stop without performing any

further calculations.

Multiple o values in the set are bypassed.)



(Option 4 = 1 selected - save index set for subsequent runs)

TIME REQUIRED TO DETERMINE INDEX SET AND HYPERVOLUMES = «001 SECONDS

HYPERVOLUME STRUCTURE SAVED ON FILE 1 OF TAPE3
HYPERVOLUME CROSSCHECK BYPASSED

TIME REQUIRED FOR FIT PROCEDURE = «020 SECONDS

This information is supplied along with any other options
selected. If only option 4 is selected CONLIM will complete
the fit procedure and supply a standard report. Other options
selected will produce additional output as described in this
appendix.
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(Option 4 = 2 selected - read hypervolumes from tape)

INDEX SET AND HYPERVOLUMES INPUT FROM TAPE4
HYPERVOLUME CROSSCHECK BYPASSED

TIME REQUIRED FOR FIT PROCEDURE = «119 SECONDS

This message is supplied if the system described on tape
matches the system described via the data set. Notice
that no time is given for construction of the index set
since it is taken from tape.
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(Option 4 = 2 Continued)
PARALLEL SYSTEM = LIKE COMPONENTS = TREATED AS 2-D CASE

SYSTEM COMPONENTS
NUMBER OF TESTS AND FAILURES

1 2
40 40
3 3
ALPHA UPPER CONFIDENCE LIMIT = «8000
SYSTEM FATLURE PROBABILITY Q@ = 1337244E+00
NUMBER OF HYPERVOLUMES IN INDEX SET = 4
TOTAL NUMBER OF NTUPLES IN SET = 32

INDIVIDUAL COMPONENT P VALUES ARE AS FOLLOWS

1 P(1)
2 P(I)

«2020070E=-01
«1333707E+00

-
nu
wn

This report can be compared to the situation when
the systems did not agree.
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(Option 4 = 2 selected - read hypervolume structure from tape)

PARALLEL SYSTEM - LIKE COMPONENTS - TREATED AS 2-D CASE

SYSTEM COMPONENTS
NUMBER OF TESTS AND FAILURES

1 2
20 20
1 1

DATA DESCRIBED AS INPUT TO CONLIM DID NOT MATCH
REQUESTED DATA FROM TAPE4 = SET BYPASSED

INFORMATION FROM TAPE4 LISTED BELOW

3 NTYPE(I)
NTYPE(I)

40 NX(T)
40 NX(I)

1 N{T)
2 N(T)

nn
w

In this situation, the information supplied via the

data set did not agree with that on tape and thus

would not have produced the proper hypervolume structure.
A diagnostic message is supplied, multiple @ values in
the set bypassed, and the next set is processed.



(Option 5 selected - check the hypervolumes criteria)

COMPARISON CHECKS ON Q VALUES FOR MINMAX LIMITS

Q VALUE USED FOR INDEX SET CRITERIAs QLIM = «761661807580E~01

KVOL QMIN QL IM=QMIN QMAX QLIM=QMAX
1 +263629197711E-01 .518E-01 +686345966958E~01 «7S3E-02
2 «481589461181E~01 «280E=-01 «T40740740741E~01 «209E-02
3

«719549724652E=-01 «421E-02 «761661807580E~01 0.

HYPERVOLUME CHECK INDICATES GOOD SET

To be included in the index set all n-tuples must
satisfy the set criteria, and hence the upper and
lower bounds of hypervolumes must also meet that
criteria. This crosscheck indicates if this condition
exists. Note that we must always have

QLIM-QMIN = 0
QLIM-QMAX = 0
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(Option 5 selected - continued)

TIME QEQUIRED TO DETERMINE INDEX SET AND HYPERVOLUMES = «002 SECONDS
VTIME REQUIRED TO PERFORM HYPERVOLUME CROSSCHECK = «014 SECONDS

TIME REQUIRED FOR FIT PROCEDURE = «045 SECONDS

Timing for the crosscheck is also supp1ied)
when this option 1s selected.
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(Option 6 = O selected - do not take branches if encountered)
SERIES SYSTEM GIVING BRANCHES FOR OPTION 6

SYSTEM COMPONENTS
NUMBER OF TESTS AND FAILURES

1 2 3
20 15 10
1 0 0
ALPHA UPPER CONFIDENCE LIMIT = ,6000
NUMBER OF HYPERVOLUMES IN INDEX SET = 1
TOTAL NUMBER OF NTUPLES IN SET = 2

LT TRy rr s Ry Ry Y

3 &%
# OSCILLATION BETWEEN COMPONENT P VALUES »
# ENCOUNTERED = EXECUTION FOR THIS ALPHA VALUE  #
& IS TERMINATED #
# BELOW ARE LISTED THE INDIVIDUAL P VALUES UPON #
# TERMINATION WITH OSCILLATING COMPONENTS MARKED *#
3 : »
3% +«*
* %
* t-2
t-2 *

I 1 P(I) «S5158699E=-0] #u#
I 2 P(I) «1522537€-03
I 3 P(I) e5737241E-0] #u#

-2 2222222 r sy s sy xls

Should the situation arise when two or more components
oscillate without advancing significantly toward a
maximum and option 6 is not set, a message is supplied
to the user. Further processing on this a is halted.
CONLIM will proceed to perform calculations for addi-
tional @ values and sets.
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(Option 6 = 1 selected - take individual branches upon oscillation)

SERIES SYSTEM GIVING BRANCHES FOR OPTION 6

SYSTEM COMPONENTS
NUMBER OF TESTS AND FAILURES

1 2 3
20 15 10
1 0 0
ALPHA UPPER CONFIDENCE LIMIT = «6000
SYSTEM FAILURE PROBABILITY @ = .1089992E+00
NUMBER OF HYPERVOLUMES IN INDEX SET = 1
TOTAL NUMBER OF NTUPLES IN SET = 2

INDIVIDUAL COMPONENT P VALUES ARE AS FOLLOWS

I =1 P(I) = L4735771g-01
I = 2 P(I) = ,1189675E-05
1= 3 P(I) = +6164032E-01

RESULTS SHOWN ABOVE WERE OBTAINED BY HOLDING
COMPONENT 1 FIXED AS THE SLACK COMPONENT VIA OPTION 6

If option 6 is selected and oscillation occurs, CONLIM
will hold each of the oscillating components fixed and
proceed to finish the calculations. We previously noted
that components 1 and 3 were oscillating. The next page
shows 3 being held fixed.

LT,
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(Option 6 = 1 continued)

SERIES SYSTEM GIVING BRANCHES FOR OPTION 6

SYSTEM COMPONENTS
NUMBER OF TESTS AND FAILURES

1 2 3
20 15 10
1 0 0
ALPHA UPPER CONFIDENCE LIMIT = «6000
SYSTEM FAILURE PROBABILITY Q@ = ,1089217E+00
NUMBER OF HYPERVOLUMES IN INDEX SET = 1
TOTAL NUMBER OF NTUPLES IN SET = 2

INDIVIDUAL COMPONENT P VALUES ARE AS FOLLOWS

I =1 P(I) = ,5984061E-01
I = 2 P(I) = ,8799240E-06
I = 3. P(I) = ,4908024E-01

RESULTS SHOWN ABOVE WERE OBTAINED BY HOLDING

COMPONENT 3 FIXED AS THE SLACK COMPONENT VIA OPTION 6

As on the preceding page, component 3 is now fixed.
CONLIM saves all information at the point of the branch
and proceeds from there without retracing the early
portion of the path.
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END OF ANALYSIS =- PARALLEL SYSTEM =~ LIKE COMPONENTS - TREATED AS 2-D CASE

Standard last page of a data set. The title
used for the set is repeated at the end of the
set analysis.

98



ROl

15

rim g

]

AR

APPENDIX F

LISTING OF CONLIM
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PROGRAM CONLIMCINPUT,OUTPUT,TAPE3,TAPE4,TAPES=INPUT)

THIS ROUTINE PERFORMS THE CALCULATIONS NECESSARY TO ESTABLISH AN
UPPER CONFIDENCE LIMIT FOR SYSTEM FAILURE PROBABILITY.

L A I S R L R N R R I R I I EE B AR

ISSUED 8Y SANDIA LABORATORIES,
A PRIME CONTRAGTOR TO THE
UNITED STATES ATOMIC ENERGY COMMISSION
L R I K B S IR IR IR TR R R BN NOTICE ¥ % ¥ % ¥ ¥ 3V YN E RN
THIS REPORT WAS PREPARED AS AN ACCOUNT OF WORK SPONSORED BY THE
UNITED STATES GOVERNMENT. NZIITHER THE UNITED STATES NOR THE
UNITED STATES ATOMIC ENERGY COMMISSION, NOR ANY OF THEIR
SMPLOYEES, NOR ANY OF THEIR CONTRACTORS, SUBCONTRAGTORS, OR THEIR
IMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY
LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS
OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT OR PROCESS
DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE
PRIVATELY OWNED RIGHTS.
¥ &% N ¥ 8 3 5 3 R FE 3 NE SN R NEE L LEELELE LY
THE BASIC REFERENCE LOCUMENT FOR THIS CODE IS SLA-73-0563,
SEPTEMBER 1973, ;
¥ ¥ B 8 & ¥ ¥ ¥ ¥ 8 8 ¥ F R BEE RN R LYY E YO
{HIS CODE HAS BEEN APPROVED FOR PUBLIC RELEASE WITHIN THE
UNITED STATES. NO FOREIGN ODISSEMINATION IS PERMITTED WITHOUT
SPECIF1IC APPROVAL FROM THE U.S. ATOMIC ENERGY COMMISSION.
LR JEE TN S SEF I IR K B IR BT IR BN R JEE NEE B I R SEE IEY Y R R R IR R R K R N
WRITTEN BY RONALD 0. HALBGEWACHS
SYSTEMS SOFTWARZ DIVISION 2641
SANDIA LABORATORIES

RELEASE DATE  MAY,1973.
#Cll!.'#'.‘i‘#.‘l‘l'l##'*“.’"!#l
INPUT GATA FORMAT

CAku 1 = OPTLON INDICATORS

BLANK CARD INUICATES NORMAL EXECUTION WITH STANDARD
QUTPUT RETURNED TO THE USER

NON-dLANK CARO INCICATES SPECIAL OPTIONS TO BE TAKEN
ANO SPECIAL OQUTPUT 1IN ADDITION TO STANDARD QUTPUT

COLs 1 = 1, PRINT INTERMEDIATE STEP VALUES OF
P TERMS, H VALUES, AND F VALUES FOR
EACH STEP IN THE FIT PROCESS
CoL. 2 = 1, DETERMINE HYPERVOLUMES ONLY, DO NOT
CALCULATE FAILURE PROBABILITY
= 1y LIST COMPLETE SET OF HYPERVOLUMES

COoLe 3

CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONL IM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIN
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIN
CONLIM

WE NV & W
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CoLs & = 1, SAVE HYPERVOLUME STRUCTURE ON TAPE3
FOR LATER RUNS = IF MORE THAN ONE
INDEX SET TOo BE SAVED (SEVERAL PROBLEMS
IN THE OATA SET) SEPARATE FILES WILL
BE SAVED
= 2y HYPERVOLUMES PREVIQUSLY SAVED ON
) MAGNETIC TAPE - READ FROM TAPE4
(TAPE4 MUST BE POSITIONED PRIOR TO

EXECUTION)

COL. 5 = 1, PERFORN CROSSCHECK ON HYPERVOLUMES
FOR MATCHING INDEX SET CRITERIA

COL. & = 1, IF COMPONENT OSCILLATION OCCURS,

TAKE EACH OF THE SEPARATE BRANCHES
BEFORE CONTINUING

CARD 2 - TITLE OF SYSTEM UNDER STUDY (8A10)
CARD 3 - NUMBER OF INDIVIDUAL COMPONENTS IN SYSTEM (I3)

CARD & - NUMBER OF TESTS PERFORMED ON EACH COMPONENT (8I10)
(NOTE - DATA CAN BE CONTINUED TO AS MANY CARDS
AS NECESSARY)

CARD 5 = NUMBER OF FAILURES ON EACH COMPONENT DURING
TESTING (8I10)
(NOTE - DATA CAN BE CONTINUED TO AS MANY CARDS
AS NECESSARY CONFORMING WITH PREVIOUS CARDS)

CARD & = INDICATOKS QOF COMPONENT IN PARALLEL OR
SERIES (8I10) (NOTE - CONTINUE DATA AS PER
THE PRECEDING COMPONENT OATA)

0 =-- INDICATES SERIES LINKAGE

1 -~ INDICATES PARALLEL LINKAGE
CARD 7 = ALPHA UPPER CONFIDENCE CRITERIA (F10.5)
{NOTE - AS MANY ALPHA VALUES AS DESIRED CAN BE
SUPPLIEDy ONE PER CARD)
CARD 8 = END OF FILE CARD (7-8-9 IN FIRST COLUMN).

AS MANY SETS OF DATA AS DESIRED CAN BE INPUT PROVIDED EACH
SET (CARD 4 = CARD 7 INCLUSIVE) IS SEPARATED BY CARD 8 AND
THE FINAL SET ALSO CONTAINS CARD 8,

INTEGER OPT

EXTERNAL SUB

DIMENSION N(50) yNX(50) 4FN(50),FNX{S0) ,PHAT(50),QHAT (50),
1FACT(50) yM(50) yMX(50) o MTYPE(50) ,NTYPE (50) ,NSTAR(50) ,0PT.{6)
2TITLE(8) yID(10) ,VAL(11) ,SAVAL(10),I0INV(10)

COMMON /QVAR/N,FNyFNX,PHAT, QHAT.IFLAG,IVOL,IVSIZE,QLIH;IVCOL,OPT.

CONLINM
CONLIM
CONLIM
‘CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLINM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLINM
CONLINM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM

. CONLIM

CONLIM
CONLIN
CONLIM
CONLIM
CONLIM
CONLIM
CONLINM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
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L1ITOTAL,NSTAR

COMMON /PSIFLG/IPSIFG

COMMON /FACTR/ FACT

COMMON /TYPZ/NTYPE

COMMON /FIRST/ IFIRST,DtEL,y IFREEZyNIDS,IDyNLAST,IVAL,VAL,
13AVAL,IDINV

TQUIVALENCE (PHAT (1) yM (1)), (ULAAT (1) ,MX (1)), (NSTAR(1),MTYPE(1))

DIMENSION NFMAX(8y500) yNFMIN(8,500) ,NFMAXX(8,500) yNFMINX(8,500)
OATA IVSIZE/S500/,1VCOL/B/

RECOVERY FLAGS SET FOR ASNORMAL TERMINATION

oo

CALL RECOVRI(5UByb3,0)

OO0

BUILD SMALL FACTORIAL ARRAY TO AVOID SQOME UNNECESSARY CALCULATION

FACT(1) = 1.
D0 20 i=1,49
XI =1 + 1
FACT(I+1) = XI*FACT(L)
20 CONTINUE
Ivs = 1vsSIit
IvcoLs = Ivcow
IFILE = 0
IFREEZ = 0

0

READ INPUT DATA

o0

XEAD 30y OPT

30 FORMAT (6I1)

35 lALP = 1
IFLAG = O
NINBAD = 0
READ 4G, TITiZ

L0 FORMAT (8A1D)
READ 60, NCOM

50 FORMAT (I3)
READ B8O, (N(I),I=1,NCOM)

80 FORMAT (8I10)
READ 80, (NX(I),I=1,NCCM)
READ 80, (NTYPE(I)yI=1,NCOM)
00 100 1=1,NCOM
FN(D) = N(D)
FNX(L) = NX(I)

100 CONTINUE

110 READ (5,120) ALPHA

120 FORMAT (F10.5)
IF (£0OF(53)) 300,121

121 IF (1ALP.GT.1) GO TO 1470
IF (OPT(4).LZs1) GO TO 131
EAD (u4,80) MCOM
READ (4,80) (MUL),I=15MCOM) 5 (MX (L) ,I=1,MCOM) 5 (MTYPE (1) sI=1,MCOM)
IF (MCOM.NE.NCOM) GO TG 123
DO 122 1=1,4NCOM

102
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CONLIM
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CONLIM
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CONLIM
CONLIM
CONLIM
CONLIM
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CONLIM
CONLIM
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CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
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111
112
113
114

118
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119
120
121
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124
125
126
127
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129
130
131
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134
135
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138
139
140
141
142
143
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145
146
147
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149
150
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IF (N(I)eNz.M(I)) GO TO 123 CONLIM 164
IF (NX(I)eNE.MX(I)) GO TO 123 . CONLIM 165
IF (NTYPE(I).NE.MTYPE(I)) GO TO 123 CONLIM 166
122 CONTINUE : CONL IM 167
GO TO 125 CONLIM 168
123 NINBAD = 1 CONLIM 1869
. GO TO 150 CONL IM 170
125 NvOL = 0 CONLIM 171
ITOTAL = 0 CONLINM 172
IECS = 1 . CONLIM 173
NWORUS = IVSIZE*IVCOL CONLIM 174
THYP = 0,0 CONLIM 175
126 IN = 1 CONLINM 176
127 READ (4,128) (NFMINC(IJSIN) sNFMAX(IJyIN),IJ=1,NCOM) CONLIM 177
128 FORMAT (2I4) CONLIM 178
IF (EOF(&4)) 130,129 CONLIM 179
129 ITUP = 1 CONLIM 180
00 12390 IT=1,NCOM . CONLIM 181
ITUP = ITUP*(NFMAX(IT,IN) = NFMINUIT,IN) + 1) CONLIM 182
1290 CONTINUE CONLIM 183
ITOTAL = ITOTAL + ITUP CONLIM 184
IN = IN + 1 CONLIM 185
NVOL = NVOL + 1 CONLIM 186
IF (IN.LE.IVSIZZ) 60 7O 127 CONLIM 187
CALL WRITEC(NFMIN,IECS,NWORDS) CONLIM 188
IECS = IECS ¢ NWORDS CONLIM 183
CALL WRITEC(NFMAX,IECS,NWORDS) CONLINM 190
IECS = IECS + NHWORDS CONLIM 191
IFLAG = IFLAG ¢ 1 CONLINM 192
GO TO 126 CONLIM 193
130 IvOL = IN - 1 i CONLIM 194
IF (IVOL.EQ.0) GO TO 137 CONLIM 195
NWORDS = IVOL*IVCOL CONLIM 196
GALL WRITEC(NFMIN,IECS,NWORDS) CONLIHM 197
IECS = IECS + NWORDS CONLIM 1938
CALL WKITEC(NFMAX,IECS,yNWORDS) CONLIM 199
IF (OPT(3)+.EQs.1) CALL PSI(NCOMyNVOLyNFMIN,NFMAX,NFMINXy NFMAXX ), CONLIM 200
1 IVS,IVGOLS,IER) CONLIM 201
G0 TO 137 CONLIM 202
c CONLIM 203
c DETERMINE THE INDEX SET AND INITIAL H FUNCTION VALUE FOR THE " CONLIM 204
c BEGINNING PHAT PROBABILITIES - START THE BALL ROLLING. CONLIM 205
Cc CONLIM 206
131 CALL SECOND(THYP1) CONLIM 207
CALL PSI(NCOMyNVOL s NFMINyNFMAXy NFMINXy NFMAXX,IVS,IVCOLS, IER) CONLIM 208
CALL SECOND(THYP2) i " CONLIM 209
THYP = THYP2 - THYP1 CONLINM 210
IF (OPT (4).NEs1) GO TO.137 CONLIM 211
WRITE (3,80) NCOM CONLIM 212
WRITE (3580) (NCI)yI=1,NCOM)y (NX(I)I=1,NCOM),(NTYPE(I), I=1,NCOM) CONLIMNM 213
MFLAG = 0 CONLIM 214
IECS = 1 CONLIM 215
NWORDS = IVSIZE*IVCOL CONLIM 216
IFLG = 0 CONLIM 217
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132 IF (1FLAG.EQ.MFLAG) 6O TQ 135 . CONLIM 218

IVEND = IVSIZE - CONLIM 219

133 CALL RCADEC(NFMIN,IECS,NWORDS) CONLIM 221
IECS = IECS + NWORDS CONLIM 221
CALL READEC(NFMAXyIECS,NWORDS) ) CONLIM 222
IECS = IECS + NWORDS CONLIM 223
1330 D0 134 IK=1,IVEND CONLIM 224
WRITE (3,128) (NFMIN(IJyIK) NFMAX(IJyIK), IJ=1,NCOM) CONLIM 225

134 CONTINUE CONLIM 226
MFLAG = MFLAG + 1 CONLIM 227

IF (IFLG.EQ.1) GO TO 133 CONLIM 228

GO TO 132 CONLIM 229

135 IF (1VOL.EQ.0) GO TO 138 CONLIM 230
IVEND = IvoL : CONLIM 238
NWOROS = IvOL*IVCOL CONLIM 232
IFLG = 1 CONLIM = 233

IF (IFLAG.EQ.0) GO TO 1330 .CONLIM 234

GO TO 133 CONLIM 235

136 ENDFILE 3 CONLIM 236
IFIL: = IFILE + 1 : CONLIM 237

137 TCOMP = D.O . CONLIM 238
IF (OPT(5).E3.0) 50 TO 138 CONLIM 239
CALL SECOND(TCOMPL) CONLIM 240
CALL COMPAQ(NCOMyNFMINyNFMAX,IVS,IVCOLS) CONLIM 241
CALL SECOND(TCOMP2) CONLIM 242

. TCOMP = TCOMP2 - TCOMPL CONLIM 243
138 PRINT 139 CONLIM 244
139 FORMAT (1Hi//7) CONLIM 245
IF (OPT(4) +EQe2) GO TO 141 CONLIM 246
PRINT 140, THYP GONLIM 247

140 FORMAT (20X,56HTIME REQUIREQ TO DETERMINE INDEX SET AND HYPERVOLUM CONLIM 248
1£S = ,F9.3y 8H SECONDS/) CONLIM 249

IF (OPT(4) NEL1) GO TO 143 CONLIM 250
PRINT 1400, IFILE,NVOL ] CONLIM 251
1400 FORMAT (/720Xy35HHYPERVGLUME STRUCTURE SAVED ON FILE,I2y14H OF TAPE CONLIM 282
13 (9169154 HYPERVOLUMES ) /) CONLIM 253

G0 TC 143 CONLIM 254

141 PRINT 142 CONLIM 255
142 FORMAT (20X,43HINDEX SET AND HYPERVOLUMES INPUT FROM TAPE4/) CONLIM 256
143 IF (OPT(5).EQ.0) GO TO 145 CONLIM 257
PRINT 144, TCOMP CONLIM 258

144 FORMAT (20Xy50HTIME REQUIRED TO PERFORM HYPERVOLUME CROSSCHECK = , CONLIM 259
1F9.3,8H SECONDS/) CONLIM 260

GO TO 147 CONLIM 261

145 PRINT 146 o CONLIM 262
146 FORMAT (20X,31HHYPERVOLUME CROSSCHECK BYPASSED/) CONLIM 2€3
147 IF (OPT(2)+EQde1) GO TO 150 CONLIM 264
1470 00 148 I=1,NCOM . . CONLIM 265
PHAT(I) = (FNX(L)+1,0)/7(FN(I)+2.0) . CONLIM 266

148 CONTLINUE CONLIM 267
CALL SECONO(TFITY1) CONLIM 2E8
CALL FiT(NCOM; ALPHA,GOFP NFMIN, NFMAXyIVS, IVCOLS,; IERR) CONLIM 269

IF (LERR«EJe3) GO TO 154 CONLIM 270

GALL SECONDU(TFIT2) CONLIM 271
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TFIT = TFIT2 - TFIT1 _ : CONLIM 272
PRINT 149, TFIT _ CONLIM 273

143 FORMAT (20X,34HTIME REQUIRED FOR FIT PROCEDURE = ,F9,3,48H SECONDS) CONLIM 274
150 PRINT 151, TITLE _ CONLIM 275
151 FORMAT (1H1///27X,8A10//) CONLIM 276
. PRINT 152 CONLIM 277
152 FORMAT (58X,17HSYSTEM COMPONENTS/53X,28HNUMBER OF TESTS AND FAILUR CONLIM 278
1ES/) - : CONLIM 279
ILIST = NCOM. CONLIM 280
ISTRT = 1 , CONLIN 281
IEND = 0 CONLIM 282

153 IF (ILIST.LE.20) 50 TO 156 ' CONLIM 283
IEND = IEND + 20 . CONLIM 284
PRINT 154y (I,I=ISTRT,IEND) . CONLIM 285

154 FORMAT (27X,20I4) CONLIM 286
PRINT 154y (N(I)yI=ISTRT,IEND) CONLIM 287
SRINT 154y (NX(I)yI=ISTRT,IEND) CONLIM 288
PRINT 155 : . CONLIM 289

155 FORMAT (//7) , CONLIM 290
ILIST = ILIST - 20 CONLIM 291
ISTRT = ISTRT ¢ 20 CONLIM 292

‘ GO TO 153 . ' CONLIM 293
156 IF (IL1ST.LT.16) GO TO 158 CONLIM 294
PRINT 157, (I,I=ISTRTyNCOM) CONLIM 298

157 FORMAT (34X,201I4) o CONLIM 296
PRINT 157, (N(I)yI=ISTRT,NCQM) CONLIM 297
PRINT 157, (NX{(I),I=ISTRT,NCOM) ‘ : CONLIM 298

GO TO 170 CONLIM 299

158 IF (IL1ST.LT.12) GO TO 168 CONLIM 300
PRINT 159, (I,I=ISTRT,NCOM) - CONLIM 301

159 FORMAT (42X,1614) CONLIM 302
PRINT. 159, (N(I),I=ISTRT,yNCOM) ‘ CONLIM 303
PRINT 159, (NX(I),I=ISTRT,NCOM) CONLIM 304

GO TO 170 CONLIM 305

160 [F (ILIST.LT.8) GO TO 162 ' : CONLIM 306
PRINT 161y (I,I=ISTRT,NCOM) } ' - CONLIM 307

161 FORMAT (48X,12I4) - - CONLIM 308
PRINT 161y (N(I)yI=ISTRT,NCOM) CONLIM 309
PRINT 161y (NX{I),I=ISTRT,NCOM) , CONLIM 310

GO TQ 170 . . - CONLIM 311

162 IF (ILISTeLTe4) GO TO 164 CONLIM 312
PRINT 163y (I,I=ISTRT,NCOM) : CONLIM 313

163 FORMAT (56X,8I4) : ‘CONLIM 314
PRINT 163y (N(I)yI=ISTRT,NCOM) CONLIM 315
PRINT 163y, (NX(I),I=ISTRT,NCCM) - CONLIM 316

GO TO0 170 o . CONLIM 317

164 PRINT 165y (Iy1=ISTRT,NCOM) CONLIM 318
165 FORMAT (63Xy4Iu) CONLIM 319
PRINT 165, (N(I),I=ISTRT,NCOM) : CONLIM 320
PRINT 165, (NXCI),I=ISTRT,NCOM) CONLIM 321

170 IF (NINBAD.EQ.0) GO TO 171 CONLIM 322
PRINT 1700 CONLIM 323

1700 FORMAT (///40X,47HDATA DESCRIBED AS INPUT TO CONLIM DID NOT MATCH/ CONLIM 324
140Xy LOHREQUESTEDO DATA FROM TAPE4 = SET BYPASSED//740Xy35HINFORMATIO CONLIM 325
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1713

171

172

1730

1732

1734

17356

1738 FORMAT (/20X,43HINDEX ScT DETERMINED VIA OPTION 2, ALPHA =

174

2N FROM TAPEL LISTED BELOW//)

PRINT. 1710, (IyM(I),MX(I)sMTYPELI),I=1,MCOM)

FORMAT (35X,4¢H1 = ,IZ,EX’THN(I) = 1IQ,5X,BHNX(I) = yI'Q,SX,
111HNTYPELI) = ,11)

GO TO 1730

IF (OPT(2).EQe0) GO TO 174

PRINT 175, ALPHA

PRINT 172

FORMAT (///20X,324HYPEKVOLUME ONLY OPTION SELECTED//)

READ (5,120) ALPHA

IF . (EQF(5)) 3DD,1732

IF (NINBAU.EQ.1) 30 70 1730

IF (OPT(3).NEei) GO TO 173¢

PRINT 1734, ALPHA

CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIN
CONLIN
CONLIN

FORMAT (/20X,62HINDEX SET COMPOSITION PREVIOQUSLY LISTED VIA OPTION CONLIM

1 3, ALPHA = ,FS.4,9H BYPASSED/)
GO TO 1730
PRINT 1738, ALPHA

134 BYPASSED/)
G0 TO 1730
PRINT 175, ALPHA

175 FORMAT (//43X4331HALPHA UPPER GONFIDBENCE LIMIT = ,F9.4)

IF C(IFREEZ +6T. 0) GO TD 200
PRINT 178, QOFP

178 FORMAT (//43X,30HSYSTEM FAILURE PROBABILITY Q =,El4.7)

180 FORMAT (//43X,3BHNUMBER OF HYPERVOLUMES IN INDEX SET = ,15/

182

PRINT 180, NVOL,ITOTAL

143X, 33HTOTAL NUMBER OF NTUPLES IN SET = ,16)
PRINT 182

PRINT 184, (I,PHAT(I)s I1I=1,NCOM)

184 FORMAT (50X 4HI = ,I295Xy6HP(I) =3E14.7)

IALP = 2
IF (IERReNE«2) 60 TO 195
PRINT 190

190 FORMAT (//74DX,

FORMAT (//43X,45HINDIVIDUAL COMPONENT P VALUES ARE AS FOLLOKWS //)

OO0

~NOVE W

PR TR TP R RS N R R R R ey X R I IR R VAN P
S1H* */40X,
S1H* NEAR-ZERO SERIES COMPONENTS MAY INDICATE THAT */40X,
S1H* CONLIM RZISULTS HAVE NCT REFLECTED TRUE SYSTEM */40X,
S1H* VALUES /40X,

51H* , “/40X,
51“.#'I.Il""l"'0".‘.“‘.“""".." Ul."."'."#.'ﬁ,

135 PRINT 139

GO To 110

OSCILLATION BETWEZEN COMPONENTS: WITHOUT CONVERGENCE

200 IF (OPT(6).EQ.1)60 TO 24D

PRINT 180, NVOL,ITOTAL
PRINT 205

205 “ORMAT (//40X,
1 GiHPSES SR FNREN YRS AR ARSI RS ANFRISFBIRIB BRI AR RRR N RRRNN/4]X,

CONLIM
CONLINM
CONLINM

sF9.4y CONLIM

CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIN
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIN
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379



OO0

OO0

210
215
220
225
230

235

240

250

300
320

340

NV WN

SiH*

51H* OSCILLATION BETWEEN COMPONENT P VALUES

51H* ENCOUNTERED ~ EXECUTICN FOR THIS ALPHA VALUE
S1H* IS TERMINATED

51H* BELOW ARE LISTED THE INDIVIDUAL P VALUES UPON

DO 230 I=1,NCOM

V0 210 J=1,4NIDS

IF (I.2Q.10(J)) GO TO 220
CONTINUE .

PRINT 215, I,PHAT(I)
FORMAT (4OX,14H* I
GO TO 230

PRINT 225, I,PHAT(I)
FORMAT (4OX,14H* i
CONTINUE

PRINT 235

FORMAT (40X,

1 S51KH*

i

»I255Xy6HP(I)

/40X,
“/ 40X,
/740X,
/40X,
/40X,

S1H* TEKMINATION WITH OSCILLATING COMPONENTS MARKED *)

’IZ’SX’EHP(I) = ,Eik.T.lDH

9E14.7,10H ***

/40X,y

2 CLIH¥* R SRR 3 IS SRV RRR IR EBRNRREIRRARRRFRRNFRRINIRRNIRY)

IFREEZ = 0
GO T0 185

TAKE BRANCHES FOR USER INFORMATION

PRINT 178, JOFP

PKRINT 180, NVOL,ITOTAL

PRINT 182

PRINT 184, (I4PHAT(I), I=1,NCOM)
PRINT 250y IU(IFREEZ)

FORMAT (//43Xy44HRESULTS SHOWN ABOVE WERE OBTAINED BY HOLDING/43X,

*)

*)

110HCOMPONENT ,12,42H FIXED AS THE SLACK COMPONENT VIA OPTION &//)

PRINT 139

CALL FIT(NCOM,ALP4A, QOFPyNFMINyNFMAX,IVS,IVCOLSyIERR)
IF (LFREEZ.,EQ.0) GO TO 110

GO 7o 150

COMPLETZD ONE SET OF DATA

PRINT 320, TITLE

FORMAT (1H1///20X,17HENO OF ANALYSIS =-,8A10)
READ (5,30) OPT

IF (EOF(5)) 340,35

CALL EXIT

END

CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONL IN
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLINM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM

. CONLIM

CONLIM
CONLIM
CONLIM
CONLIM

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
LOu
405
406
407
Lo8
409
410
bi1
412
413
b1y
415
416
417
418
419
420

421

422
423
LYLs
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SUBROUTINE PSI(NCOMD,yNVOLyNFMINyNFMAXy NFMINXyNFMAXX,yIVSIZE,IVCOL,

1 LERR)
CONSTRUCTION OF THE INDSX SET PSI BY USE OF HYPERVOLUMES

INTEGER OPT

OIMENSION N(50) yFN(50) yFNX(50),PHAT(50) ,QHAT (50),FN2(50),
INSTAR(S0) yPSAVE(50) , OPT(6) » JFLAG(5)

ODIMENSION NFMINCIVCOL,IVSIZE),NFMAX(IVCOL,IVSIZE),
1 NFMINX(IVCOL, IVSIZE) y NFMAXX(IVCOL,IVSIZE)

COMMON /QVAR/ N,y FNyFNX,yPHAT ,UHAT yIFLAGy IVOL,IVS,QLIM,IVC,OPT,
11T OTAL, NSTAR

COMMON /PSIFLG/IPSIFG
DATA NFAULT/1000000/

18k = 0
IPSIFG = 0

NCOMP = NCOMD

IF (OPT(4),EQ.2) 50 TO 900

IFLAG = O

IOM = 0

NWORUS = IVCOL*IVSIZE
MWORUS = NWORDS
ITOTAL = 0

INITIALIZATION OF CRITERION FOR HYPERVOLUME ACCEPTANCE INTO PSI

DO 20 1I=1,NCOMP

FN2(l) = 1.0/ (FN(I)+2,0)
PHAT(I) = (FNX(I)+1.0)*FN2(I)
PSAVE(I) = PHAT(D)

CONTINUE

QLIM = QTHETA(PHAT)

INITIALIZE NSTAK

DO 40 1COMP=1,NCOMP
NSTARCICOMP) = 0

CONTINUE
IvoL =1
IVCHK = 1
IECS = 1

START NEW HYPSRVOLUME UPPER LIMITS AT STAR VALUES AND THEN WORK
UPWARD TO MAXIMUM

D0 120 ICOMP=2,NCOMP

NFMAX (ICOMP,IVOL) = NSTAR(ICCMP)
XSTAF = NSTAR(ICOMP) + 1
PHAT(ICOMP) = XSTAR®*FN2(ICOMP)
CONTINUE

DETERMINE UPPER LIMITS ON EACH DIMENSION

CONLINM
CONLIM
CONLIM
CONLIM
CONLIN
CONLIM
CONLIM
CONLIM
CONLINM
CONL IM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIN
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIN
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIN
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIN
CONLIM
CONLIM
CONLIM

425
426
w27
428
429
430
431
432
433
434
435
436
437
438
439
440
Lb]
L42
443

445
446
4u?
w48
449
450
451
452
453
454
455
456
457
458
453
460
wel
462
463
464
465
466
LE?
468
469
470
471
472
473
474
475
476
477
478
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o000

c
c
c
c

140

160

170
180

200

210
220
240
250

260

300

DO 180 ICOMP=1,NCOMP

IF (NSTAR(ICOMP) «EQ«N(ICOMP)) GO TO 180
NICOMP = N(ICOMP) ¢ 1

ISTRT = NSTAR(ICOMP) + 2

DO 140 I=ISTRT,NICOMP

IA = I-1

A =1

PHATC(ICOMP) = A*FN2(ICOMP)

IF (QTHETA(PHAT) = QLIM) 140,140,160
CONTINUE

NFMEX (ICOMP,IVOL) = IA

GO TO 180

IF (lA.EG.0) GO TO 170

NFMAX (ICOMP,IVOL) = IA - 1

A = 1A

PH AT (ICOMP) = A*FN2 (1COMP)
GO TO 180

NFMAX (ICOMP,IVOL) = O
CONTINUE

SET UP LOWER LIMITS ON EACH COMPONENT
COMPLETES DEFINITION OF A HYPERVOLUME

DO 200 ICOMP=1,NCOMP
NFMIN(ICOMP,IVOL) = NSTAR(ICOMP)
CONTINUE

CHECK ON OVERLAP AS DETAILED IN ALGORITHM STEP 5

IF (LVCHK.EQ.1) GO TO 430
IECI = 1

MFLAG = @

IF (IVOL..EQ.1) GO TO 402
IEND = IVOL - 1

DO 400 ITRY=1,IEND
ICHK = IEND = 1TRY + 1
JF = 0

JCOMP = 0

00 300 ICOMP=2,NCOMP
IF (NFMAX(ICOMP,IVOL)
IF (NFMAX(ICOMP,IVOL)
IF (NFMINCICOMP,IVOL)
IF (NFMINCICOMP,IVOL)
JCOMP = ICOMP

G0 To 300

IF (UF.EQ@.5) 60 TO 300
JF = JF+1

JELAG(JF) = ICOMP
CONT1NUE

SCANNED ALL OIMENSIONS IN THE VOLUME

IF OVERLAP EXISTS, USE THEOREMS 2 ANG 3 ToO

IF (JCOMP.GT.0) GO TO 340

NFMIN(ICOMP,1CHK))
NFMAX(ICOMP,ICHK))
NFMAX (ICOMPyICHK))
NFMIN(ICOMP,ICHK))

400,210,210
240,240,220
260,260,400
250,300, 300

SEPARATE VOLUMES.,

CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLINM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLINM
CONLIM
CONLIM
CONLIM
CONLINM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM

. CONLINM

CONLINM
CONLIM
CONLIM
CONLIM

- CONLIN

CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM

479
480
481
482
483
L84
L85
486
487
488
489
490
491
g2
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
5098
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
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110

302

304

305

310

315

340
400
402

405
407
408
410

414

415

416

417

418

4180

4190

IF (NFMAX(1,IVOL) - NFMAX(1,ICHK)) 302,302,304
IF (JF.EQ.D0) GO TO 500

GO TO 305 )

IF (JF«2Q.5) 60 TO 305

JF = JUF+1

JFLAG(JF) =1

DO 31D JI =1,JF

JFLG = JFLAG(JI)

IF (NFMAX(JFLGy 1CHK) +LT«N(JFLG)) GO TO 315
CONTINUE

G0 TO 500

NFMIN(JFLG,IVOL) = NFMAX(JFLG,ICHK) +

LAP = ICHK + IFLAG*IVSIZE ‘

IERR = 1

GO TO 400

NFMAX (JCOMP,IVOL) = NFMIN(JCCMP,ICHK) = 1
CONTINUE

IF (MFLAG.EQ.IFLAG) GO TO 430

CALL READEC{NFMINX,IECLl,MWORDS)

[ECI = IECI + MWOROS

CALL READEC(NFMAXX,IECI,MWORE3)

IECI = IECI + MWORDS

MFLAG = MFLAG + 1

DO 420 ITRY=1,1VSIZE

ICHK = IVSIZE = ITRY + &

JF =0

JComp = 0

00 415 I1COMP=2,NCOMP
IF (NFMAX(ICOMP,IVOL)

IF (NFMAX(ICOMP,1VOL)
IF (NFMINCICOMP,IVOL)
IF (NFMIN{ICOMP,IVOL)
JCOMP = ICOMP

GO TO 415

IF (JF.EQ.3) 60 TO 415

JF = JF ¢+ 1
JFLAG(JF) = ICOMP
CONTINUE

NFMINX(ICOMPyICHK)) 420,405,405

NFMAXX(ICOMP,ICHK)) 408,408,407

NFMAXX{ICOMPy ICHK)) W1b,414,420
NFMINX(ICOMP,ICHK)) 410,415,415

IF (JCOMP.GT.0) GO TO 419
IF (NFMAX(1,IVOL) = NFMAXX(1,ICHK)) 416,416,417

IF (JF«EW.0) GO TO 500

GO TO 418

1IF (JF.EQ.3) GO TO 418

JF = UF ¢+ 1
JFLAG(JF) =1

DO 4180 JI=1,JF
JFLG = JFLAG(JI)

IF (NFMAXX(JFLG,ICHK) «LTeN(JFLG)) GO TO 4190

CONTINUE
GO T0 500

NFMIN(JFLG,IVOL) = NFMAXX(JFLG,ICHK) + 1
LAP = ICHK + (MFLAG=1) *IVSIZE

IERR = 1
GO TO 420

CONLIM

CONLIM -

CONLIN
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIN
CONLIM
CONLIM
CONLINM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
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CONLINM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLINM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLINM
CONLIM

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
S48
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
574
572
573
574
575
576
577
578
579
580
581
582
583
586
585
586
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OO0

OCO0O0

o000

OO0

«19
20

430

440

460

500

600

620

640

700

NFMAX (JCOMP,IVOL) = NFMINX (JCOMP,ICHK) = 1
CONTINUE .
GO TO 402

LATEST HYPERVOLUME PROPERLY DESCRIBED - DETERMINE NEXT STARRED
VALUE IN THE SECOND DIMESNSION

NSTAR(2) = NFMAX(2,IVOL) + 1

ITUPLE = 1

DO 440 I=1,NCOMP

ITUPLE = ITUPLE*(NFMAX(I,IVOL)=-NFHINCI,IVOL)+1)
CONT INUE

ITOTAL = ITOTAL + ITUPLE

IVCHK = IVCHK + 1

IF (IVOL LT.IVSIZE) GO TO 460

CALL WRITEC (NFMIN,IECS,NWORDS)

IECS = IECS + NWORDS

CALL WRITEC(NFMAXyIECS,NWORDS)

IFLAG = IFLAG + 1

IECS = IECS + NWORDS
VoL = 1

GO TO €00

IVOL = IVOL + 1

G0 TO 600

HYPERVOLUME DID NOT CONTRIBUTE - REDUNDANT ﬁITH VOLUMES
PREVIOUSLY DEFINED

NSTAK(2) = MAXO(NSTAR(2),NFMAX(2,IVOL)) + 1

STEPS 7 THRU 11 - CALCULATE ALL NEW STARRED VALUES FOR EACH OF
THE DIMENSIONS = WHEN FOUND, GO BACK THROUGH ENTIRE VOLUME
CETERMINATION AND CHECKING

D0 620 I=1,NCOMP

XSTAR = NSTAR(I) + 1

PHAT(I) = XSTAR*FN2(I)

CONTINUE

ICOMP = 2

IF (NSTAR(2).GT«N(2)) GO TO 700
XSTAR = NSTAR(ICOMP) + 1
PHAT(ICOMP) = XSTAR®*FN2(ICOMP)

SEE IF READY TO 60 FIND A NEW HYPERVOLUNME
IF (QTHETA(PHAT) - QLIM) 100,100,700

STARRED VALUES REPRESENT CURRENT MINIMUMS - VALUE THAT MUST BE
USZD IN THIS DIMENSION, BY DEFAULT, IS ZERO

NSTAK(ICOMP) = D

PHAT (ICOMP) = FN2(ICOMP)
ICOMP = ICOMP ¢ 1

IF (1COMP.GT.NCOMP) GO TO 800

CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM

CONLIM
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* CONLIM

CONLIM
CONLIM
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" CONLIM

CONLIM
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587
588
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594
595
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605
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608
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QOO0OO0O0

OO0 0

oo

(e NeXe]

740
750
749

751

754
756

758

761
780

800

SET UP THE VALUE FOR THE NEWEST STARRED DIMENSION = USE THE
MINIMUM OF THE UPPER BOUNDS THAT ARE .GE.
VALUE IN THIS DIMENSION., THAT IS, NEW L*
NOTE THAT IF U(K,J) = L*, THIS IS THE DEFINED MINIMUM.

NEXT = NFAULT

IF (IVCHK.EQ.1) GO TO 760
IF (1VOL.EQ.1) GO TO 743
IEND = IVOL-1 .

DO 750 ITRY =1,IEND

ICHK = IEND = ITRY + 1

IF (NFMAX(ICOMP,ICHK) = NSTAR(ICOMP)) 750,760,740

NEXT = MINO(NEXT,NFMAX (ICOMP,ICHK))
CONTINUE

IECI = 1

MFLAG = 0D

IF (MFLAG.EQeIFLAG) GO TOo 758
CALL READEC(NFMINX,IECI,MWOROS)
1ECI = IECI + MWORDS

CALL READEC(NFMAXX, IECI,MWORDS)
IECI = I&CI + MWOROS

MFLAG = MFLAG +1

00 756 ITRY=1,IVSIZE

ICHK = IVSIZE =~ ITRY + 1

IF (NFMAXX(ICOMP,ICHK) = NSTAR(ICOMP)) 756,760,754

NEXT = MIND(NEXT,NFMAXX(LCOMP,ICHK))
CONTINUE
20 70 751

NOTE - SINCE L* INDICATZS THE MINIMUM FOR THE PREVIOUS SET,
THERE MUST BE AT LEAST ONE U(K,yJ)+GE.L* PROVIDED THERE

EXISTS MORE THAN ONE HYPERVOLUME
IF (NEXT.EQeNFAULT) GO TO 760
MINIMUM READY FOR TH1S DIMENSION
NSTAR(ICOMP) = NEXT + 1
GO TO 780
NSTER(ICOMP) = NSTAR(ICOMP) + 1
IF (NSTAR(ICOMP).5T.N(ICOMP)) GO TO 700
GO TO b4o

FINI - ALL HYPERVOLUMES DESCRIBED

NVOL = IVCHK=-1
IvoL = IvOoL-1
IpSIFG = 1

IF (1FLAG.EQ.0) GO TO 300

IF (IVOL.EQ.J) GO TO 900
NWORDS = IVCOL*IVOL

CALL WKRITEC(NFMIN,IECS,NWORDS)
IECS = IECS + NWORDS

THE CURRENT STARRED
MINC U(KyJ) +GE®
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OO0

CALL WRITEC(NFMAX,IECS,NWORDS) CONLIM 695

. . CONLIM 696
CHECK OPTIONS - SEE IF HYPERVOLUME PRINTOUT DESIRED CONLIM 697
CONLIM 693

900 IF (IFLAG.GT.0) GO TO 1000 ~CONLIM 699
IF (OPT(3).EQ.0) RETURN CONLIM 700
‘PRINT 905 CONLIM 701

305 FORMAT (1H1///45X,42HHYPERVOLUME STRUCTURE WITHIN INDEX SET PSI//) CONLIM 702
PRINT 910, NVOL,ITOTAL CONLINM 703

910 FORMAT (45X,38HNUMBER OF HYPERVOLUMES IN INDEX SET = ,I5/ CONLIM 704
147X,33ATOTAL NUMBER OF NTUPLES IN SET = ,I6//) CONLIM 705

00 980 I=1i,NVOL CONLIM 706
PRINT 920, I CONLIM 707

920 FORMAT (/20X 10H***¥VOLUME ,I4/) : CONLIM 708
. 00 960 J=1,NCOMP CONLIM 709
PRINT 940, JyNFMIN(J,yI)yNFMAX(JyI) CONLIM 710

940 FORMAT (30Xy4HJ = 3I13,2XyIHMIN(J) = ,14,2X, SHNAX(J) = ,IW) CONLIM 711
960 CONT1NUE . CONLIM 712
980 CONTINUE . CONLIM 713
RETURN CONLIM 714

1000 NWORDS = IVCOL*IVSIZE CONLIM 715
IeECs = 1 CONLIM 716

KVOL = 0 CONLIM 717

IF (OPT(3).EQ.Q) RETURN CONLIM 718
PRINT 905 CONLIM 719
PRINT 910, NVOL,ITOTAL CONLIM 720

00 1060 I=1,IFLAG CONLIM 721

CALL READEC(NFMINyIECS,NWORDS) R CONLIM 722

IECS = IECS *+ NMWORDS CONLINM 723

CALL READEC(NFMAX,IECS,NWORDS) CONLIM 724

IECS = IECS + NWORDS CONLIM 725

DO 1040 J=4,IVSIZE ) CONLIM 726
KVOL = KVOoL + 1 . CONLINM 727
PRINT 920, KVOL CONLIM 728

0O 1020 ICOMP=1,NGCOMP CONLINM 729
PRINT 940, IGCOMPyNFMIN(LCOMPyJ) 9yNFMAX (ICOMP,J) CONLIM 730

1020 CONTINUE . CONLIM 731
1040 GONTINUE CONLINM 732
1060 CONTINUE CONLIM 733
IF (IVOL+EQe.D) RETURN CONLIM 734
NWORDS = IVCOL*IVOL - CONLIM 735

CALL READEC(NFMIN,IECS,NWORDS) CONLIM 738

IECS = IECS + NWORDS CONLIM 737

CALL READEC(NFMAX,IECS,NWORDS) ) CONLIM 738

DO 1100 J=1,IVOL CONLIM 739

KVOL = KVOL + 1 CONLINM 740
PRINT 920, KVOL CONLIM 741

00 1080 ICOMP=1,NCOMP S ‘CONLINM 742
PRINT 940, ICOMP,NFMIN(ICOMP,J) sNFMAX (ICOMP,J) CONLIN 743

1080 CONTINUE CONLIN 744
1100 CONTINUE ) CONLIN 745
RETURN CONLIM 746

END CONLIM L7



o000

SUBROUTINE COMPAQ(NCOMD, NFMINyNFMAX,IVSIZE,IVCOL) CONLIM 748
CONLINM 748

CROSSCHECK ON HYPERVOLUMES TO INSURE THE MINIMUM AND MAXIMUM CONLIM ‘750
LIMITS ON VOLUMES SATISFY BOUND CRITERIA DESCRIBING PSI CONLIM 751

’ CONLIM 752

DIMENSION N(50) yFN(50) yFNX (50) yPHAT(50) ,QHAT (50) ,FN2(50) CONLIM 753
DIMENSION NFMIN(IVCOL,IVSIZE),NFMAX(IVCOL,IVSIZE) CONLIM 754
COMMON /QVAR/NyFNy FNXyPHAT y QHAT yIFLAGy NVOL ,IVS,QDMM,IVC CONLIM 755
CONLIM 756

IERR = 0 CONLIM 757
IERRL = 0 CONLIM 758
IERRT = 0 CONLIM 759
NCOMP = NCOMU CONLIM 760
PRINT 10 : CONLIM 761

10 FORMAT (1H1//739X,47HCOMPARISON CHECKS ON Q VALUES FOR MINMAX LIMIT CONLIM 762
18/ CONLIM 763
DO 20 I=1,NCaMP . CONLINM 764
FN2(I) = 1.07(FN(I)+2.0) CONLIM 765
PHAT(I) = (FNX(I)#140)*FN2(I) CONLIN 766

20 CONTINUE CONLIM 767
QLIM = QTHETA(PHAT) CONLIM 768
PRINT 15, QLIM CONLIM 769

15 FORMAT (30X,44HQ VALUE USED FOR INDEX SET CRITERIA, QLIM = , CONLIM 770
1520,12//24Xy4HKVOL » 12X, 4HGMIN 14Xy 9HQL IM=QMINy 13X, 4HQMAX 314X, CONLIM 771
29HQLIM-QMAX/) CONLIM 772
KVOL = 0§ CONLIM 773
MFLAG = O CONLIM 774
IECI = 1 ‘ CONLIM 775
NWORDS = IVCOL*IVSIZE CONLIM 776

30 IF (MFLAG.ZQ.IFLAG) GO TO 50 « CONLIM 777
IVEND = IVSIZE CONLINM 778

40 CALL READEG(NFMIN,IECI,NWORDS) CONLIM 779
ISCI = IZCI + NWORDS CONLIM 780
CALL READEC(NFMAX,IECI,NWORDS) CONLIM 781
IEC1 = IECI + NWORDS ) CONLIM 782
MFLAG = MFLAG + 1 CONLIN 783

GO TO 60 CONLINM 784

50 IF (NVOL.EG.0) KETURN CONLIN 785
IVEND = NVOL CONLIM 786

IF (IFLAG.EWJ.0) GO TO 6D CONLIM = 787
NWORLS = IVCOL*NVOL CONLIM 788

GO TO 40 CONLIM 789

60 DG 100 IVOL=1,IVEND CONLIM 790
KVOL = KVOL + 1 ‘ CONLIM 791

DO 70 I=1,NCOMP CONLIM 792

IF (NFMIN(I,IVOL)WsGT«N(I)) IERRYL = 1 CONLIN 793
AP1 = NFMIN(I,IVOL) + 1 CONLINM 794
PHAT(I) = APL*FN2(I) S CONLIM 795

70 CONTINUE CONLIM 796
QMIN = QTHETA(PHAT) CONLIM 797
OMIN = QLIM = QMIN CONLIM 798

IF (UMIN.GEs 040) GO TO 75 CONLIN 739
IERR = 1 CONLIM 800

IVR = KVoL CONLIM 801

o~
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75

8a

85
90

92

94
96

100

110

120

130

00 80 I=1,NCOMP

IF (NFMAX(I,IVOL)«GToN(I)) IERR1 =1
AP1 = NFMAX(I,IVOL) + 1

PHAT(I) = AP1*¥FN2(I)

CONT INUE

QMAX = QTHETA(PHAT)

DMAX = QLIM - QMAX

IF (UMAX.GE. 0.0) GO TO 85

IERR =

IVR = KvoL

PRINT 90, KVOL,QMINyDMINyQMAX,DMAX

FORMAT (20X,I4y5XyE20+41295X9E106395X922041295XyE10,3)

IF (IERR1.EQ.0) GO TO 100

PRINT 92

FORMAT (15X,10H***rrxxrsx,)

DO 96 1=1,NCOMP

PRINT 94, 1yNFMIN(I,IVOL),NFMAX(I,IVOL)

FORMAT (20X, ,4HI = 9yI29y5X96HMIN = 914y 5X,6HMAX = ,I&)

CONTINUE

IERRL = 0

IERRT = IERRT ¢ 1

PRINT 92

CONTINUE

IF (IFLAG.EQ.0) GO TO 110

IF (IVEND.LT.IVSIZE) GO TO 110

GO TO 30

IF (1ERR.EQe1 +OR. IERRT.GT.0) GO TO 130
PRINT 12¢

FORMAT (//30X,35HHYPERVOLUME CHECK INDICATES GbDD SET)

RETURN
PRINT 140y IVR

FORMAT (//20X,40HHYPERVOLUME CHECK INDICATES THAT VOLUME

1 IMPROPERLY CONSTRUCTED)
RETURN
IND
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SUBROUTINE FIT(NCOMD,ALPHAyQCFPyNFMINy NFMAX,IVSIZE,IVCOL,IERR)

OO0 O0OO0O0

INTEGER

0 , SERIES CONNECTION (DELSER)
1 5 PARALLEL CONNECTION (DELPAR =

oPT

ROUTINE MATCHES THE Q CURVES ALONG THE H CURVE SO THAT THE
MAXIMUM Q VALUE CAN BE OBTAINED SATISFYING THE ALPHA-UPPER
CONFIDENCE LIMIT,.

DELTA SHIFT VALUES ARE WEIGHTED ACCORDING TO COMPONENT POSITION
NTYPE

SQRT (DELSER) )

DIMENSION N(50) 4FN(50),FNX(50),PHAT(50),QHAT(50) ,FACT(50),
1PSAVE(SD) yDELH(S50) yNTYPE(50) y PORIG(50) y QORIG(50) ,QM(50) ,0PT(6),
2PTIL(50),PLAST(50),10(10) yPFRZ(50) VAL (11) ,SAVAL (10),IDINV(10)

DIMENSION

NFMINCIVCOL ,IVSIZE) 9 NFMAX(IVCOL,IVSIZE)

COMMON /QVAR/NgFNyFNXyPHAT,WUHAT,IFLAG, NVOL,IVS,QP,IVC,0PT

COMMON /F

ACTR/ FACT

COMMON /TYPES/NTYPE
COMMON /FIRST/ IFIRST,UELSER,IFREEZ,NIDS,IDyNLASTyIVAL,VAL,

1SAVAL,,I0I
ODATA DEL

ONEMAL =
NCOMP = N
IERR = 1
ITHRU = 1
ITOTM = 0
NSER = 0
DO 10 I=1
IF (NTYPE
NSER = NS
10 CONTINUE
NSER = MI
DZLSER =
IFIRST =
IF (IFKEE

NV
MIN/1.0E-06/

1.0 - ALPHA
COMD

s NCOMP
(I'e=Q@.1) G0 TO 10
ER + 1

NO(50,10%NSEK)
6.0

b

2.GT.,0) 50 TO 760

D0 20 I=1,NCOMP

QHAT(I) =
PORIG(I)
QORIG(I)
20 CONTINUE
IF (OPT (1
PRINT 25

1.0~ PHATI(I)
= PHAT(D)
= QHAT(D)

)o£3.0) G0 TO 38

25 FORMAT (1H1//)

PRINT 30, (I,PHAT(I), I=1,NCOMP)
30 FORMAT (5Xs4rAl = 3I13535Xy10HPHAT(I) = 4E15.7)
50 TO 38
32 ITHRU = 1
ITOTM = 0
DELSER = 0.5¥DELSER
DELZ2 = 0.5*0ELSER
DELSAV = 0.,5*DELSAV
DELPAR = SQRT(DZLSER)
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CONLIM
CONLIM
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837

839

-840

841
842
843
8L4
845
846
847
848
849
8540
851
852
853
854
855
856
857
858
859
860
8ée1
862
863
8eh
8€5
866
8e7
868
869
8710
874
87e
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878

880
881
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889
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35
38

36

37

40

9010
45

CQHAT (D)

50

30
100
103

185

80 35 1=1,NCOMP

PHAT (I) = PORIG(I)
QHAT (1) = QORIG(I)
CONTINUE

HVALUE = HFUN(NCOMP, NFMIN, NFMAX,IVSIZE,IVCOL)
IF (HVALUE - ONEMAL) 36,37,37

ISTAT = =1

6o 10 39

ISTAT = 1

ISTATC = 1

IF (OPT(1),EQ40) GO TO 45

PRINT 3010, HVALUE .
FORMAT (5X,29HHVALUE STARTING OFF DELTAP = ,E15,8)
D0 50 I=1,NCOMP
DELH(I) = 0.0

= 1.0 = PHAT (I)
CONTINUE
XNUM = ONEMAL - HVALUE

CHECK VZRY FIRST STARTING VALUE TO SEE IF TOO FAR REMOVED
FROM CURVE FOR ANY CONVZRGENCE POSSIBILITY

IF (ITHRU.GT.1) GO TO 103

IF (ABS(XNUM) = D.5%ONEMAL) 100,100,80
IF (XNUM) 187,103,189

IF (XNUM) 103,103,105

IF (ISTAT.EQ.1) GO TO 108
ISTATC = ISTATC + 1 '
ISTAT = 1

IF (ISTATC .LT. S) GO TO 108
DELSER = 0.5*DELSER

DELSAV = D.5*DELSAV

DELPAR = SQRT(DELSER)

ISTATC = 1

G0 TO 108

IF (1STAT.EQ.-1) 30 TO 110
ISTATC = ISTATC + 1

- ISTAT = =1
GO TO 110

108
110

120
140

i60
1890
9030

185

IF (XNUM) 110,180,110

GALL DELTA2(NCOMP,A2,NFMIN,NFMAX,IVSIZE,IVCOL)
DO 120 I=1,NCOMP

PSAVE (L) = PHAT(I)* (1.0 = XNUM/A2)

CONTINUE

D0 160 I=1,NCOMP

PHAT(I) = PSAVE(I)

AHAT(I) = 1.0 - PSAVE(I)

CONTINUE ,

IF (OPT(1).EQ.0) GO TO 185

PRINT 9030, (I,PHAT(I),QrAT(I),I=1,NCOMP)
FORMAT (5X,4HI = ,I2,2X,10HPHAT(I) = ,E15,7,2X,10HQHAT (1)
1) :
DO 190 I=1,NCOMP

IF (PHAT(1).LE. 0.0) GO TO 191

’EiSo7
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CONLIM
CONLIM
CONLIM
CONLIM

891
8g2
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IF (PHAT(I).GEs 1.,0) GO TO 191 CONLIM 945
130 CONTINUE CONLIM 4B

HVALUE = HFUN{NCOMP, NFMINy NFNAX, IVSIZE,IVCOL) CONLIM 947
HSAVE = HVALUE CONLIM 948

QP = QTHETA(PSAVE) CONLIM 949
ITOTM = ITOTM ¢+ 1 CONLIM 950

IF (ITOTM.GT.NSER) GO To 1900 CONLIM 951
GMOITOTM) = QP CONLIM 962

GO TO 1940 CONLIM 953

, CONLIM 954

LONG PERIOD FOR THIS STEPSIZE - ARE WE PROGRESSING TO MAXIMUM CONLIM 955

: _ CONLIM 956
1300 IF ( ABS(GMINSER)-QM(1)) = DEL2) 530,530,1920 CONL IM 957
1320 ISTOP = NSER-1 . . CONLIM 958
00 1930 1=1,ISTOP CONLIM 9%g

1930 QM(I) = QM(I+1) CONLIM 960
QM (NSER) = QP CONLIM 961

1340 IF (OPT(1).EQ.0) 50 TO 213 CONLIM 962
PRINT 9020, HVALUZ CONLIM 963

9020 FORMAT (5X,2BHHVALUE AFTER DELTAP SHIFT = ,E20.12) CONLIM 964
PRINT 9040, apP CONLIM 965

9040 FORMAT (5X,30HQP VALUE AFTER DELTAP SHIFT = ,E20,12) CONLIM 966
60 TO 213 CONLIM 9e7

191 IF (ITHRU.GT.1) GO TO 32 CONLIM 968
IF (XNUM) 187,213,189 CONLIM 969

‘ CONLIM 970

STARTING HVALUE TOO FAR REMOVED FROM 1-ALPHA CURVE - CONLIM 971
BISECTION USED TO IMPROVE INITIAL GUESS FOR FIT. » . CONLIM 972
CONLIM 973

187 DO 188 I=1,NCOMP CONLIM 374
PLAST(1) = 1.0 CONLIM 975

188 PHAT(I) = PORIG(I) CONLIM 976
ICHKCT = 0 CONLIM 977

ICIR = 1 CONLIM 978

GO TO 201 CONLINM 979

189 DO 192 I=1,NCOMP : CONLIM 980
PLAST(1) = 0.0 CONLIM 981

192 PHAT(I) = PORIG(ID) CONLIM 982
ICHKCT = 0 CONLIM 983

IDIR = -1 CONLIM 984
CONLIM 985

MOVE TOWARD ZERO CONLIM 986
CONLIM 987

193 ICHKCT = ICHKCT + 1 CONLIM 988
IF (IDIR«EQ.1) GO TO 195 CONLIM 989

DO 194 I=1,NCOMP CONLIM 990

194 PTIL(I) = PHAT(I) : CONLIM 991
60 TO 197 : o CONLIM 992

195 DO 196 I=1,NGONP CONLINM 993
PLAST(I) = PTIL(D) CONLIM 994

196 PTIL(I} = PHAT(I) CONLIM 395
197 DO 198 I=1,NCOMP CONLIM 996
PHAT(I) = PTIL(L) = Q.5%¥ (PTIL(I)=-PLAST(I)) CONLIM 997

o

198 QHAT(I) 1.0 = PHAT(I) CONLIM 938
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201

IDIR = ~1
GO TO 207 .

MOVE TOWARD ONE

ICHKCT = ICHKCT + 1

-IF (1IDIR.EQ.1) GO TO 203

202
203
204
205
206
207
9206
9207
2070

208

2as

32110
2030
210
211
212

213
2110

2120
2130

214

DO 202 I=1,NCOMP

PLASTI(1) = PTIL(D)

PTIL(I) = PHAT(1)

GO TO 205

Do 204 I=1,NCOMP

PTIL(I) = PHAT(I)

DO 206 1=1,NCOMP

PHAT (I} = PTIL(I) + 0. 5’(PLAST(I)-PTIL(I))
QHAT(I) = 1.0 = PHAT(I)

IDIR =1

IF (OPT(1).EQ.0Q0) GO TO 2070

DO 39207 I=1,NCOMP

PRINT 9206, I,PHAT(I)

FORMAT (20XyI295XyE15.7)

CONTINUZ

00 208 [=1,NCOMP

IF (PHAT(I).LEs 0.0) GO TO 201

CONTINUE

DO 209 I=1,NCOMP

IF (PHAT(I).GE. 1.0) GO TO 193

CONTINUE :
HCHECK = HFUN(NCOMPy NFMINy NFMAX,IVSIZE,IVCOL) =~ ONEMAL
IF (OPT(1).EQ.0) GO TO 2090

PRINT 9210, HCKRECK

FORMAT (20X,9HHCHECK = ,E15.7/)

IF (ABS(HCHECK) <= 0.5*ONEMAL) 211,211,210
IF (HCHECK) 193,211,201

IF (OPT(1).EQ.0) GO TO 38

PRINT 212, ICHKCT

FORMAT (10XyI343641 MOVES WLTH BISECTION WERE PERFORMED/)
GO TOU 338

IF (IFREEZ.GT.0) GO TOo 2110

CALL SLACK(NCOMP,PHAT,13LACK)

IF (LFIRST.EQ.2) 30 TO 700

PHATSV = PSAVE{ISLACK)

IF (OPT(1).EQ.0) GO TO 2130

PRINT 2120,ISLACK

FORMAT (10X,9HCOMPONENT,I4,28H USED TO MAINTAIN CONSTANT Q)
IREG = NCOMP + 1

IF (ITHRU.GT.1) GO TO 214

CALL SMDELT(NCOMP,PSAVE,DELSER)

DEL2 = 0.5*DELSER

DELSAV DELSER

DELPAR SQRT (DELSER)

ITHRU = 2

60 TO 215

IF (ITHRU.EQ.3) GO TOo 215

CONLIM
CONLIM
CONLIM
CONLINM
CONLIM
CONLIM
CONLIN
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONL IM
CONLIM

- CONLIM

CONLIM
CONLIM
CONLIM
CONLIM

- CONLIM

CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
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1024
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215
220

225
228

230

260

270

400U

420

DELSER = DELSAV

DEL2 = 0,5*DELSER

DELPAR = SQRT(DELSER)

IF (DELSER - DELMIN) 600,220,220
IREG = IREG = 1

IF (IREG.EQ.0) GO TO 500

IF (LREG.EQ.ISLACK) GO TO 220

IF (NTYPE(IREG) +EQs1) GO TO 225
OEL = DELSER

G0 To 228

OEL = DELPAR

PHAT (IREG) = PSAVE(IREG) + DEL
QHAT(IKEG) = 140 = PHAT(IREG)

NEG = 0

IF (PHAT (IREG)+3Es 1.0) 6O TO 270
THETA = (QTHETA(PHAT) =PHAT (ISLACK) ) /QHAT (ISLACK)
PTRY = (QP = THETA)/ (1.0 - THETA)
IF(PTRYWLE, 0.0) GO TO 260

IF (PTRY +GE. 1.0) GO TO 260

PHAT (ISLACK) = PTRY

QHAT(ISLACK) = 1,0 - PTRY

H = HFUN(NCOMPy NFMINyNFMAX, IVSIZE,IVCOL)
IF (H - HSAVE) 260,400,400

IF (NEG.EG.1) 60 TO 300

MAY HAVE MOVED IN WRONG DIRECTION = TRY OTHER WAY

PHAT (IREG)
QHAT (IREG)
NEG = 1

1IF (PHAT (IREG)) 300,300,230

PSAVE(IREG) - DEL
1.0 - PHAT(IREG)

CANNOT ACCEPT NEW P(IREG) VALUE - EITHEZR DEL STEP WAS TOO LARGE
TO MAINTAIN A CONSTANT Q@ VALUE OR H VALUE FOR NEW P (IREG) WAS
ON WRONG SIDE OF CURVE (MAINTAIN VALUES OF H .GT. 1-ALPHA),

IN ELTHER CASE, TRY A SMALLER DEL.

UELH (IKREG) 0.0

PHAT (IREG) PSAVE (IREG)
PHAT(ISLACK) = PHATSV

UHAT (IREG) = 1.0 =~ PHAT(IREG)
QHAT (ISLACK) = 1.0 = PHAT(ISLACK)
50 TO 220

un

ACCEPTABLE P(IREG) VALUS - MAINTAINED CONSTANT Q ANC VALUE OF H
ON PROPER SIut OF CURVE.

P VALUES ARZ HELD 3ACK AWAY FROM ABSOLUTE BOUNDARY - WILL ASSUME
VALUES VERY CLOSE HOWEVZIR., PREVENTS H FUNCTION FROM SECOMING
INDEFINITE OR INFINITE.

GELH(IREG) = H = ASAVE
IF (PHAT(IREG) = 1.0) 420,300,300
IF (PHAT (IREG)«LE«0.0) GO TO 300
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HSAVE = H CONLIM 1107
PHATSV = PHAT(ISLACK) : . CONLIM 1108

G0 To 220 CONLIM 1109

C CONLIN 1110
c COMPLETED OEL ADJUSTMENT OF ALL P VALUES - NOW DETERMINE WHAT CONLIM 111t
C FURTHER ‘ADJUSTMENTS SHOULD BE MADE. CONLIM 1112
C ) CONLINM 1113
500 IF (OPT(1).,EQ.0) GO TO 510 CONLIM 1114
PRINT 9060, DELSER CONLIM 1115

9060 FORMAT (5X,18HDEL VALUE TR1ED = ,E15.7) CONLIM 1116
PRINT 9030, (I,PHAT(I),QHAT(I),I=1,NCOMP) CONLIM 1117

510 00 520 I=1,NCOMP CONLINM 1118
IF (DELH(I)) 550,520,550 CONLIM 1119

520 CONT1INUE ) : CONLIM 1120
530 ITHRU = 3 CONLIM 1121
PHAT (ISLACK) = PSAVE(ISLACK) N CONLIM 1122

GHAT (ISLACK) = 1.0 - PSAVE(ISLACK) CONLIM 1123
DELSER = 0,5*DELSER CONLIM 1124
DELPAR=SWRT(DELSER) . CONLIM 1125

ITOTM = 0 CONLIM 1126

DEL2 = 0.5®0ELSER CONLIM 1127

IF (DELSER =- DELMIN) 60052135213 CONLIM 1128

550 HVALUE = HSAVE CONLIM 1129
GO TO &0 CONLINM 1130

C CONLIM 1131
c COMPLETED MATCHIN> OF THE Q ANO H CURVES = WE HAVE REACHED THE CONLIM 1132
C MINIMUM DEL SET FOR CONVERGENCE CRITERION CONLIM 1133
Cc . CONLIM 1134
600 DO 620 I=1,NCOMP CONLIM 1135
PHAT(I) = PSAVE(I) CONLIM 1136
QHAT(I) = 1.,0- PSAVE(I) CONLIM 1137

520 CONT1INUE CONLIM 1138
QOFP = QTHETA(PHAT) CONLIM 1139

IF (PHAT(ISLACK) «LEes (2.,0®*DELMIN)) IERR = 2 CONLIM 1140
RETURN CONLIM 1141

c CONLINM 1142
C OSCILLATION IN FIT - CHZCK FOR FREEZE OPTION ON COMPONENTS CONLIM 1143
c CONLIM 1144
700 IF (OPT(B)eNZe0) GO TO 720 : ' CONLIM 1145
IFREEZ = NIDS CONLIM 1146

IERR = 3 . CONLIM 1147
RETURN CONLIM 1148

720 IFREEZ = NIDS ‘ CONLIM 1149
DO 740 I=1,NCOMP : CONLIM 11950
PFRZ(I) = PSAVE(I) CONLIM 1151

740 CONTINUE . : CONLIM 1152
HFRZ = HSAVE CONLIM 1153
DELFKZ = DELSER CONLIM 1154

QPFRZ = QP ' CONLIM 11655
ITHUFZ = ITHRU CONLIM 1156
ISLACK = ID(IFREEZ) CONLIM 1157

GO TO 2110 CONLIM 1158

760 IFREEZ = IFREEZ-1 CONLIM 1159
IF (IFREEZ.EQW.0) RETURN CONLIM 11€0



ISLACK = ID(IFREEZ) CONLIM
DO 780 I=1,NCOMP

. CONLIM
PSAVELI) = PFRZ(D)
780 CONTINUE

HSAVE = HFRZ
OELSER = DELFRZ

1161
1162
CONLIM 1163
CONLIM = 116k
CONLIM 1165

: CONLIM 1166
DELSAV = DELFRZ CONLIM 11€7
QP = QPFRZ CONLIM 1168
ITHRU = ITHUFZ
GO TO 2110 :

CONLIM 1169
CONLIM 1170
CONLIM 1174

©ND
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SUBROUTINE SLACK(NCOMP,PHAT,ISLACK)

OETEKMINE ‘WHICH SERIES COMPONENT CURRENTLY HAS THE LARGEST PHAT
VALUE AND SET ISLACK EQUAL TO THE COMPONENT INDEX FOR USE IN

THE FIT ROUTINE. MAINTAIN A SURVEILANCE OVER THE INDICES CHOSEN
TO DIAGNOSE CYCLING. TWO CHECKS ARE MADE, THE FIRST TO CATCH
REPETITION AND THE SECOND TO DETERMINE IF ACTUAL STEP IMPROVE-
"MENT IS STILL PROSRESSING OR HALTED.

DIMENSION PHdT(NCONP),NTYPE(SU),ID(iO),VAL(ii),SAVAL(iO),SAVT(lU),

1IDINV(10)

COMMON
COMMON

/FIRST/ IFIRSTyDELyIFREEZy)NyIDyNLAST,IVALyVALySAVAL,y IDINV
/TYPE/ NTYPE :

FIND MAXIMUM COMPONENT (SERIES ONLY) -

PMAX =

0.0

DO 20 i=1,NCOMP
IF (NTYPE(I) .EQ. 1) GO TO 20
IF (PHAT(I) .LT. PMAX) 6O TO 20

ISLACK
PMAX =

=1
PHAT (1)

CONTINUE
IF (IFIRST.EQel) 50 T0 «0C

BEGIN PRIMARY CYCLE CHECK

IF (ISLACK.NE,IDINV{NLAST)) GO TO 100
IF (N.EQ.1) GO TO OO

IBEX = N-NLAST+1i

SAVAL (IDEX) = PMAX

IF (NLAST.EG.N) GO TO 30

IF (NLAST.NE.1) GO TO 35

NLAST ‘= N

60 TO 40

IVAL = IVAL+1
VAL(IVAL) = PMAX
NLAST = NLAST=-1
iIFLAG IFLAG+L

IF ¢ (IFLAG/N) oLTgS_)VRETURN

COMPLETE CYCLE PERIGD ENCOUNTERED - PERFORM SECONDARY CHECK
ON PROGRESS IN CONVERGENCE : o

IVEND

IVAL-1

DO S50 J=1,IVEND
IF (ABS(VAL(J+1)~-VAL(J)) - 0.5*DEL) 50,50,60
CONTINUE

NO PROGRESS MADE - WARN F1T ROUTINE AND USER

IFIRST
RETURN

= 2
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SOME PROGRZISS MADE - KNOCK OFF FIRST CYCLE AND CONTINUE
WITHIN THE PZRICD

NL AST N

IFLAG IFLAG=-N
IVAL = IVAL-1

DO 70 I=1i,IVAL
VAL(L) = VAL(I+}1)
CONT1NUE

RETURN

([T

SLACK COMPONENT OID NOT MATCH THE EXPEZCTED COMPONENT OF THE CYCLE.

IF ONLY ONZ COMPONENT IN CYCLE THEN WE ARE BUILDING CYCLE

AND WE HAVE A NEW COMPONENT. .

IF MORE THAN ONE COMPONENT THEN WE MAY HAVE INTERRUPTED THE CYCLE
AND THE PERIODy AND A NZW CYCLE WILL BE FORMED,

IF (N.EQ.1) G0 TO 300

INEW = 0

NSTOP = N-1

B0 120 II=1,NSTOP

I =11

IF (ISLACK.ZQeID(I)) GO TO 160
CONTINUE

IF (ISLACK.EQ.ID(N)) GO TO 400

ISLACK AN ENTIRELY NEW GOMPONENT - NOW CHECK If FIRST CYCLE
STILL BEING FORMED

IF (IVAL.EQ.1) GO TO 300
NEW COMPONENT FbR NEW CYCLE - INTERRUPTED OSCILLATION -- REFRESH

I = N-NLAST

NNEW = N+1

IVAL = 1 .
VAL(1) = SAVAL (NNEW-NLAST)

50 TO 200

CYCLE COMPONCNT OJT OF PHASE - LNTERRUPTED OSCILLATION
PICK UP NEW CYCLE WITH COMPONENT IMMEDIATELY FOLLOWING MATCH

NNEW = (N=I) + (N-NLAST+1)
IVAL = 1

VAL(1) = SAVAL(I+1)

IF (NNEW.LT.N) GO TO 200

SPLIT IN OLD CYCLE INTERRUPTED.IN MIDDLE WITH DUPLICATE
COMPONENT IN SAME CYCLE - NO PARTS IN PREVIOUS CYCLE

NNEW = NNEW-=N
IF (NNEW.EQ.1) GO TO 290
INEW =1
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o000

200

220

230

235

240

250

260

280
290

295

300

320

NEW CYCLE CREATION USING PARTS OF PREVIOUS CYCLES == NEMW
REGENERATE BOOKKEEPING

CO 220 J=1iy4N
JJ = N=J+1 .
SAVT(J) = SAVAL (JJ)

. IF (INEW.EQ.0) GO TO 230

JSTOP = NNEW-1

6o To 235

JSTOP = N-NLAST

IF (JSTOP.EQ.0) GO TO 250

PICK UP COMPONENTS FRCM FIRST PART OF INTERRUPTED CYCLE

0O 240 J=1,JSTOP

JNEW = NNEW-J

JJ = NLAST+J

IDCJINEW) = IDINV(JJ)
SAVAL {JNEW) = SAVT (JJ)
IF (INEW.EQ.1) GO TO 290
GO TO 2640

EVERYTHING FOR NEW CYCLE FROM PREVIOUS COMPLETED CYCLE

JNEW = NNEW

PICK UP REMAINDER OF NEW CYCLE FROM PREVIOUS COMPLETED CYCLE

JSTOP = N-I

DO 280 J=1,JSTOP
JNEW = JNEW-1
IDC(JNEW) = IDINV(J)
SAVAL (UNEW) = SAVT(J)

N = NNEW
IFLAG = N
NLAST = N

SAVAL (N) = PMAX
ID(N) = ISLACK
DO 295 J=1,4N

JJ = N=Jd+1
IDINVWJ) = IDWIN)
RETURN

NEW MEMBER OF CYCLE -~ CON

N = N+1

I0(N) = ISLAGK

SAVAL (N) = PMAX

IFLAG = IFLAG+1

00 320 I[I=1,NLAST

1 = N=II+1

IDINV(I) = IDINV(I-1)
IDINV (1) = ISLACK
NLAST = N
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1301
1302
1303
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RETURN

RESET ALL VALUES TO INITIAL - NEW CYCLE OF A NEW PERIOD

IFIRST =
N =1
IFLAG
NLAST
SEINGN)
IBDINV (D)
IVAL = 1
VAL(1) =
SAVAL (1)
RE TURN
IND

0

1
1

ISLACK

= ISLACK

PMAX

PMAX
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SUBKROUTINE SUBLEXyX,Y)

THIS SUBROUTINE IS CALLED VIA THE CALL T0 RECOVR IN THE MAINLINE

WHEN A TIME LIMIT OCCURS. INFORMATION AVAILABLE TO THE USER

AT THAT TIME IS PRINTED.

UDIMENSION N(50)yFN(50) yFNX(50),PHAT(50),QHAT (50)

COMMON /QVAR/ NyFNyFNXyPHAT,QHAT,IFLAG,IVOL,IVS,QDMM,IVCOL

COMMON /PSIFLG/ IPSIFG
ITOT = IFLAG*IVS + IvoL
PRINT 20, IFLAG,IVOL,ITOT

20 FORMAT (1H1///10X,21HRUN WAS NOT COMPLETED//10X,8HIFLAG
15X, 7HIVOL = ,110//10X,57HTOTAL NUMBER OF HYPERVOLUMES SELECTED AT

2TIME OF ABORT = ,16)
IF (IPSIFG.EQ.1) GO TO 30
PRINT 25

25 FORMAT (//10X,51HSUBROUTINE PSI HAD NOT COMPLETEO HYPERVOLUME SET

1CONSTRUCTION)
GO TO 38
30 PRINT 35

35 FORMAT (//10X,57H4YPERVOLUME SET CONSTRUCTION WAS COMPLETED PRIOR

170 ABOKT)

38 PRINT 40, QDMM

40 FORMAT (///10Xy37HVALUE OF SYSTEM Q AT TIME OF ABORT
STOP
END

= 4,110,

9E15.7)
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FUNCTION HFUN(CNCOMDy NFMIN,NFMAX,IVSIZE,IVCOL)

DIMENSION N(50) yFN(50) yFNX(50) s PHAT(50) ,QHAT (50) , FACT (50)
DIMENSION NFMIN(IVCOL,IVSIZE),NFHMAX(IVCOL,IVSIZE)

COMMON /QVAR/NyFNy FNXyPHAT s GHAT y IFLAGy NVOL,IVS,QDMM,IVC
COMMON 7/ FACTR/ FACT

DATA CONST/ 8.1061466795328E-02/

CALCULATE THE ENTIRE H FUNCTION USING HYPERVOLUMES.
THE PROBABILITY VALUES P OF THE FUNCTION ARE OBTAINED FROM
LNCREMENTAL MOVES (SUBROUTINE FIT). i

NCOMP = NCOMD

HFUN = 0.0
MFLAG = 0
IECI = 1

NWORUS = IVCOL*IVSIZE

IF (MFLAGJEQ.IFLAG) GO TO 10
IVEND = IVSIZE

CALL READEC(NFMIN)IECI,NWORDS)
IECT = IECI ¢ NWORDS

CALL READEC(NFMAX, IECI,NWORDS)
1ECI = IECI + NWORDS

MFLAG = MFLAG + 1

GO TO 15

IF (NVOL.EQ.0) RETURN

IVEND = NvOL

IF (1FLAG.ZQ.0) GO TO 15
NWORUS = IVCOL*NVOL

GO TO 8

DO 300 IVOL=1,IVEND

nPROD = 1.0

DO 200 ICOMP=1,NCOMP

NI = N(ICOMP)

HSUM = 0.0

ISTRT = NFMIN(ICOMP,IVOL) ¢+ 1
IEND = NFMAX(ICOMP,IVOL) + 1
RECFAC = PHAT(ICOMP) /QHAT (ICOMP)
ISTRM = ISTRT-1

00 1300 I=ISTRT,1END

IA = -1

AT = IA

IF (IA.EQ.NI) GO TO 80

IF ({A.SQ.0) G0 TO &0

IF (NI - 50) 20,20,40

UTIL1ZE STORED FACTORIALS

NMIA = NI - IA .

H1 = FACT(NI)/ (FACT (IA)*FACT(NMIA))

IF (1AGT.ISTRM) 50 TO 16

H2 = (PHAT(ICOMP)**IA)*(QHAT(ICOMP)**NMIA)

GO TO 18
H2 = H2*RECFAC
HF = H1*HZ2
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GO To 90

USE STIRLING APPROXIMATION FOR LOGARITHM OF BINOMIAL COEFFICIENT

FNI FN(ICOMP)
RML = FNI « AI + 1

-IF (1A.GT.ISTRM) 30 TO 50

RM = RM1 - 1,0
XN1L = FNI + 1,0
1 = 1.0/7(AI+1.0)
ORM1 = 1,0/RM1

TN = 12.0%XN1

H2 = FNI*ALOQG(XNLi*QHAT(ICOMP)®*ORM1)

HF = H2 + AI®ALOG(RM1*RECFAC®R1) .

H2 = HF ¢ 0.5%ALOG(XNL*R1*ORML) + CONST

HF = EXP(H2 + (AI®*RM - XN1*XN1) *R1*0RM1/TN)
G0 TO 90

HF = HF*RECFAC*RM1/AI

GO TO 940

Al PARAMETER EQUAL ZERO =-- PHAT TERM AND B.C. OUT

HF = QHAT (ICOMP)**NI

he = HF

60 To 90

AI PARAMETER SQUAL MAXIMUM N(I) -- QHAT TERM AND B.C. OUT
HF = PHAT(ICOMP)**IA

H2 = HF

ADD VALUE INTO SUM FOR FOR THIS DIMENSION OF VOLUME

HSUM = HSUM + HF
CONT1NUE

HPROL = HPROU®*HSUM
CONTINUVE

SUM UP CONTRIBUTION FROM ALL VOLUMES

HFUN = HFUN + HPROO
CONTINUVE .

IF (IFLAG.EQ.0) RETURN

IF (IVENULLT.IVSIZE) RETURN
GO TO0 5

END

CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM

CONLIM

CONLIN
CONLIM
CONLINM
CONLINM
CONLIM
CONLIN
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLINM
CONLIM
CONLINM
CONLINM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
" CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
"CONLIM

1429
1430
1631
1432
16433
1434
1435
1436
1437
1438
1439
1640
1661
1642
1443
1hbl
1445
1446
16447
16448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1661
1462
14€3
1464
1465
1466
1467
14€8
14€9
1470
1671
1472
1473
16474
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SUBROUTINE SMDELT(NCOMU,P,LEL)
DETERMINE THE INiTIAL STEPSIZE OELTA

DLMENSION P (NCOMD)
NCOM = NCOMD
XNCOM = NCOM

PSUM = 0.0

U0 20 I=1,NCOM
PSUM = PSUM + P(I)
CONTINUE

AVE = PSUM/XNCOM
DEL = 0.1%AVE
RETURN

IND

CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM

1475
1476
1477
1478
1479
1480
14814
1482
1483
1484
1485
1486
1487
1488
1489

e
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SUBROUTINE DELTA2(NCOMD,A2,NFMIN,NFMAX,IVSIZE,IVCOL)
ADJUSTMENT FACTOR FOR HYPERVOLUME SYSTEM

COMPUTE NECESSARY DELTA VALUE TO MOVE TO THE H CURVE FROM THE
CURRENT COORDINATES., MOVE TOWARD CORNER (0y0jyeeesD)e

DIMENS1ON N(50) yFN(50) 4FNX(50),PHAT(50) ,QHAT(50),FACT(50),XNP(50)

DIMENSION NFMINCIVCOL,IVSIZE),NFMAX(IVCOL,IVSIZE)
COMMON /QVAR/ NyFNyFNXyPHAT,QHAT IFLAG, NVOL,IVS,QDMM,IVC
COMMCN /FACTR/ FACT ,

DATA CONST/8.1061466795328E~02/

A2 = 0.0

NCOMP = NCOMD

DO 20 I=1,NCOMP

XNP(I) = FN(I)®*PHAT(I)

CONTINUE
MFLAG = D
IECI = 1

NWORUS = IVCOL®IVSIZE

IF (MFLAG.EWQ.IFLAG) 6O TO 10
IVEND = IVSIZE

CALL READEC(NFMINyIECI,NWOROS):
IECI = IECI + NWORDS

CALL READEC(NFMAX,1ECI,NWORDS)
[ECI = IECI + NWORDS

MFLAG = MFLAG + 1

G0 TO 15

IF (NVOL«EQ.0) RETURN
IVEND = NVOL

IF (LFLAG.EQ.D0) GO TO 13
NWORDS = IVCOL*NVOL

G0 TO 8 .

DO 500 IvVOL=1,IVEND

ASUM = 0.0

b0 400 IM =1,NCOMP

APROD = 1.0

00 300 IN=1,NCOMP

AISUM = 0.0

NI = NCIN)

ISTRT = NFMINCIN,IVOL) + 1
IEND = NFMAX(INyIVOL) + 1
RECFAC = PHAT (IN)/QHAT (IN)
ISTRM = ISTRT = 1

00 200 I= ISTRT,IEND

IA = I-1

Al = IA

IF (IA+EQ.NI) 60 TO 100
IF (IA.EQ.0) GO TO 80

IF (NI - 50) 40,40,60

UTILIZE STORED FACTORIALS

CONLIM
CONLIM
CONLIM
CONLINM
CONLIM
CONLINM
CONLIM
CONLIM
CONLINM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIN
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIN
CONLIM
CONLIN

. CONLIM

CONLIM
CONLIM
CONLIM
CONLIM

. CONLIM

CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIN
CONLIM
CONLIM

1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
15086
15907
1568
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1528
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
15440
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1542
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PARAMETER EQUAL ZERO -- PHAT TERM AND B.C.

STIRLING APPROXIMATION FOR LOGARITHM OF BINOMIAL GOEFFICIENT

(PHAT (IN)**IA) * (QHAT (IN)**NMIA)

EXP(H2 + (AI*RM = XN1¥*XN1)*R1*ORM1/TN)

+ CONST

MAXIMUM N(I) -- QHAT TERM AND B.C. OUT

WANT DELTA(M,N) FACTOR

NMIA = NI - IA

H1 = FACT(NI)/(FAGT(1A)*FACT(NMIA))
IF (IAGT.ISTRM) GO TO 50

H2 =

G0 TO 55

H2 = H2*RECFAC

HF = Hi*H2

G0 TO 120

USE

FNI = FNC(IN)

RM1 = FNI - AL + 1

IF C(IA.GT.ISTRM) 50 To 70

KM = RM1 - 1.0

XN1 = FNI + 1,0

R1 = 1.0/(AL+140)

ORM1 = 1.0/RML

TN = 12.,0%XN1

H2 = FN1*ALOG(XN1*QHAT (IN) *ORM1)
HF = H2 + Al1*ALOG(RM1*RECFAC*R1)
H2 = HF + 0.5*ALOG(XN1*R1*0RM1)
HF =

GO To 120

HF = HF*RECFAC*RM1/Al

GO TO 120

Al

HF = WHAT(IN)**NI

H2 = HF

GO T0 120

AI PARAMETER EQUAL

HF =PHAT(IN)**IA

H2 = HF

CHECK TO0 Stz IF wWE

IF (INJ.NEsIM) GO TO 140

HF = HF* (XNP(IN) - AI)/QHAT(IN)
AISUM = AISUM + HF

CONTINUE

APRQD = APROD*AISUM

CONTINUE

ASUM = ASUM + APROD

CONTINUE

SUM UP VALUES FOR ALL VOLUMES

A2

A

2 + ASUM

CONTINUE

IF (LFLAG.EQ.0) RETURN

CONLIM
CONLINM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLINM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM
CONLIN
CONLIM
CONLIM
CONLIM
CONLIM
CONLIM

CONLIM
CONLIM
CONLIM
CONLIM
CONLIM

CONLIM

CONLIM
CONLIM
CONLIM
CONLIM

CONLIM

CONLIM
CONLIM
CONLIM

CONLIM
CONLIM

CONLINM

CONLIM
CONLIM

CONLIM
CONLIM

CONLIM

CONLIM

1544
1545
1546
1547
1548
1549
1550
1554
1582
1553
1554
15¢5
1556
15857
1558
1559
15¢€0
15€1
15¢2
1563
1564
1565
1566
1567
1568
15¢€9
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
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1588
1589
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1591
1592
1593
1594
1595
1596
1597
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IF (IVEND.LT.IVSIZE)
GO To 5
END

RETURN

CONLIM
CONLINM
CONLIM

1598
1599
1600
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