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Abstract
A brief discussion is presented of the effects of alternatives to the
atistics Notes 1 and 2. Some values of population reliability confidence

Tculated assuming different initial states of information from sources
ther than testing are presented as examples.
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Soqe Notes on Effects of Supplemental Information on Confidence and Reliability.

1. (The maximum ignorance assumption.) In the Appendix the reader will find
reproduced the first four paragraphs of PSN (Probability and Statistics

Note) 1. In paragraph 4 of this Appendix (and of PSN 1) there is a proviso
which should receive careful attention: "you have no idea what the number of
defective missiles is before you begin to test." The same proviso appears in

PSN 2 (paragraph 8): "In this paper we shall assume . . . that the distribution
of f is unknown and that the only information the evaluator of the data can get
about it is from a finite number L of measurements.” Thus, in PSNs 1 and 2

(and also in PSNs 5 and 6 and SDAN 13), except for independence of failure among
population members and except for the dichotomy imposed by the experimenter,
there was no assumption made regarding the distribution of the population

prior to the acquisition of the test data., That is, no information was assumed
about the population from any other source than the given experiment. Thus the
axiom set from which the theory was developed was in some sense minimal.
However, this very lack of assumptions may itself be phrased as an assumption:
it was assumed that no information about the population was available from any
source except the given experiment. So it might be said that when one assumes
as little as possible about the population he fs making an assumption of
maximum ignorance.

2. (Strengths and weaknesses.) The maximum ignorance assumption has certain
virtues to recommend it. For example, if one makes other, stronger assumptions
about the population then one presumably has to be prepared to defend them. It
may be more difficult generally to prove from miscellaneous scraps of information
that only a restricted class of distributions of the population is possible than
ly to plead ignorance and consider all kinds of populations impartially.
» the confidence in reliability of a well designed and constructed system
h one will calculate from test results using the maximum ignorance assumption
in general be a Tower bound (“worst case") on the confidence one would
ulate using stronger (and therefore harder to defend), more optimistic
tions. On the other hand there are certain drawbacks to using the maximum
rance assumption. Most importantly, it is seldom true that one has absolutely
ther information from which confidence about the population distribution
d be deduced prior to testing. Therefore the maximum ignorance assumption,
gh easy to defend and apply and though it gives useful results, is seldom

most accurate model of the real world.1 Another drawback is that faflure
nclude important information among one's assumptions can result in needing
rger (and more expensive) number of tests in order to achieve a given level
onfidence in the actual character of the population.

(Alternatives to the maximum ignorance assumption: Homogenefty.) What other
s of information might one have than that from testing? One example is, it

t be known that the population is quite homogeneous. This is something that
d be deduced from knowldge of stringent QC (quality control) procedures in

e during production of a significant fraction of the population. (Such QC
need govern only characteristics relevant to the particular dichotomy which has
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n imposed by the experimenter or system analyst. If the concern is whether
population elements will or will not perform properly electrically, then it
usually irrelevant whether or not they are all the same color.) Or it might
possible to deduce homogeneity from the successful production of a theoretical
el of relevant characteristics of population members. For tf whoever produced
model has also verified it against a significant fraction of the population,
n for members of that fraction to all be like the model they must also be
e one another,

(Optimism.) It has been suggested2 that in most real cases testing is not
n considered until one has achieved assurance from some other source that
population would do well in the testing. To give a specific example,
sider a population each element of which is itself a simple system involving
ew distinct components. It could be that one has already completed
austive tests on each kind of individual component employed in the
struction of all population elements. If all components have performed
standingly in these earlier tests, and if the population elements in addition

each strongly parallel in design3, then analysis of component test results
ht have resulted in one's being completely confident that the fraction of
ulation elements which would pass the coming test, assembled, is at least,

» 50%. This then would be an example of a priori (with respect to tests of
assembled elements) confidence in 50% population reliability, Another kind
information which could lead to this sort of a priori optimism is knowledge
high quality in design and manufacture, as evidenced for example by past
cesses of those responsible for design and manufacture of members of the
sent population. Such information might give one higher confidence, prior
testing, that the populatfon has only a small fraction defective than that
has a large fraction defective. To give an example of this kind of optimism,
might, prior to testing, have not just higher confidence for higher

babilities of success but in fact have confidence4 linearly proportional to
those probabilities (with a positive coefficient of proportionality). Yet another
example would be the case in which available information made one quite sure,
prior to testing, that his confidence in a given probability of success should

be directly proportional to the square (or other higher power) of that

probability (again, with a positive coefficient of proportionality). If one has
information from which such a priori confidence can be deduced, then taking
account of it would be more realistic than employing the maximum ignorance

assumption.5

5. (Pessimism.) The example and remarks in the preceding paragraph also apply
when information is available from which inverse or negative proportionality
can be deduced.

6. (The finite population case: N < = ,) Granting then that information on
hand prior to testing may warrant one of a variety of alternative assumptions,
making the maximum ignorance assumption a relatively poor model, how do we
adjust our theory to use such new information or assumptions? To answer this
question, Tet us look first at how the maximum ignorance assumption affected
our equations. Equation (4) of PSN 1 is
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pR(Hl)
N-L+M ’

> ()]

where C is confidence, R is population reliability (by which we mean a lower

bound on the fraction of the population which is "good"), L and M are defined6
in paragraph 4 of the Appendix to the present note, and N is the (finite) number
of members (i.e., cardinality) of the population. This equation covers the case
of independent sampling without replacement from a finite population, assuming
maximum ignorance. Let us, for the sake of figures which will appear later in
this note, here change the definition of M. In PSN 1 M represented the

number of unsatisfactory elements in the sample. In PSN 2, in contrast, M was
used to represent the number in the sample which were satisfactory. Let us

here shift from the convention of PSN 1 to that of PSN 2. It can be shown,

by reasoning analogous to that in PSN 1, that the above equation then becomes

N-L+M - I\
2l()(5),

C(R) = : (1.
2[R0}
< L\n/\Lm/

(Note that in this expression the index of summation, I, represents the number
"good" in a population which is a candidate for the source of the given sample,
whereas the indices of summation in equation (4) of PSN 1 represented the
possible number "bad".)

C(R)

7. (Generalization to allow for supplemental information.) Equation (1) arose
letting each of the N+1 possible kinds of populations (or Minuteman fleets,

in the case of PSN 1), with fractions good from %-, %», ﬁ', ... 5 to W
be represented equally as possibilities for the population from which the random

data was actually taken.7 Therefore each of these possible kinds of populations
is represented by an equal number of terms (viz., one) in the denominator of the

exp ession.8 Similarly, of all the possible kinds of populations which have
fractions good greater than or equal to R, each is represented by an equal

er of terms (viz., one) in the numerator of equation (1)8. That the
maximum ignorance assumption thus led us to represent each possible kind of
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population impartially, i.e., by exactly the same number of terms, viz., by
exactly one term, in the numerator and denominator of equation (1), can be (:)
stated mathematically by saying

Ap =1 V1 (2)

in a more general formulation of equation (1), viz.,
Na e 1y ey
2 A‘(M)(L-M)J
I=R*N e

NEM - oy /AT T
Z AL

I=M b M L-M -

Thus equation (2) is a mathematical statement of the maximum ignorance
assumption. It permits us, effectively, to factor out the AI in both the

numerator and the denominator of equation (3), and then to cancel them to

derive equation (1) as a special case of the more general reliability-confidence
relation given in equation (3). However, if maximum ignorance had not been

assumed then AI would not have been constant. In that case the factoring out (:)

and cancelling of the AI are no longer legitimate and we must use equation (3)

directly, instead of using the simplified version of it given as equation (1),
To use equation (3) directly we need to know the values of the AI' Without the

maximum ignorance assumption we cannot use equation (2) to obtain those values.
How do we get them?

C(R) = (3)9 .

8. To see how to obtain the values of the AI in equation (3), let us return to

the discussion of Sam and his marbles in PSN 1 (reproduced in part as an Appendix
to the present note). In paragraph 3 of PSN 1 we calculated a confidence value
of 5%-% « This calculation was done by dividing the probability of acquiring
the given experimental results from the white barrel by the sum of the
probabilities of achieving those results from each of all possible kinds of barrels
(cf. the Appendix). Let's rewrite that sentence in a more concise notation,

Let P denote the (unknown) fraction of marbles which are white in the barrei.
Since we know (from paragraph 1 in PSN 1) that every marble in the barrel is
either black or white, it follows immediately that the fraction of marbles which
are black in the barrel is 1-P , Similarly, {f L marbles are drawn and M of

them are white then L-M of the sample are black. Let Pw(MlN,L,P) denote the

probability of drawing M white marbles from a total of N marbles in L independent
random draws, given that the fraction of the marbles which are white in the
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barrel is P. Let Pb(BIN,L,P) denote the probability of drawing B black marbles,

where the other parameters are given exactly the same definitions as above.
These remarks imply

Py (BIN,L,P)

"

Pb(L-M[N,L,P) =

P, (MIN,L,P)

ince "the probability of getting a white marble in a single random draw" means
he fraction of marbles which are white in the barrel, and since P is being

sed to denote this fraction, another immediate consequence of these definitions
s

-t e+t W

]
]

P,(1IN,1,P) = :

~—

et C(R) denote our confidence that P > R (R for "reliability"). Then the
alculation which is stated verbally in paragraph 3 of PSN 1 may now be written:

P, (11100000,1,1)
P (1]100000,1,1) + P, (11100000,1,.5)

0O

c(1.)

= 66%.% (4) .

his equation, paragraph 3 in PSN 1, and paragraph 3 in the Appendix to the
resent note are all equivalent. These three equivalent statements at no point
n their development assumed maximum ignorance. What is assumed instead is the
nformation provided in paragraph 1 of PSN 1, viz., that only two barrels of
arbles were to be considered, that for one of them P = 1, and that for the
ther P = .5 , Therefore equation (3) was applied, and the supplementary
nformation led us to set

e O T b b =

1 for I = 50,000 or 100,000
AI = (5) .

0 otherwise

his equation is simply a mathematical statement of the assumption that the
arrel from which we have randomly drawn a sample of one white marble may

o -
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contain either 50,000 white marbles out of 100,000 or else 100,000 white

rbles out of 100,000; we have no reason to prefer one of these alternatives

er the other; and we know that no other alternatives are possible for the

rrel in front of us. So equation (5) is a mathematical representation of a
rticular state of supplementary information. As such it is an alternative to
uation (2), and in fact a more realistic (and therefore preferable) alternative
for the problem proposed in the opening paragraphs of PSN 1.

T OO0 3

Equations (5) and (3), then, are the'genera] statement of equation (4).
They are what produce the number 66% % in paragraph 3 of PSN 1. (Note that

equation (1), which is equivalent to equation (4) in PSN 1, which was derived
using the maximum ignorance assumption, would not produce that number for the
confidence that the sample was from the white barrel. The maximum ignorance
assumption would in fact imply a confidence of virtually zero for R =1,

= 100,000, L =1, and M = 1.10) Thus PSN 1 in fact contained calculations
involving an alternative to the maximum ignorance assumption. Where did the
particular supplementary information represented by equation (5) come from?
Paragraph 1 of PSN 1 didn't say, but we could for example have learned from
Sam, who had perhaps examined the contents of the barrels in detail and then told
us some of his findings. (If this was our source of supplementary information
en PSN 1 also assumed implicitly that we could place absolute confidence in
ything Sam says, at least regarding these barrels. "Absolute" may be too
rong a word to constitute a perfectly accurate model, and yet may be
fficiently accurate to provide a usable approximation.) In the present note
are concerned not so much with the details of finding and justifying such
pplementary information for a particular population as we are in studying the
fects of it on reliability-confidence relationships after it has been found
d justified. ’

OO0V EVVLL

(Summary so far.) Let us summarize to this point. Equation (3) of this
te 18 the gemeral statement of the reliability-confidence relationship for
nite populations (dichotomized and sampled independently without replacement).
uation (2) is a statement of the maximum ignorance assumption. These two
uations taken together generate equation (1). Equation (1) therefore gives
e reliability-confidence relationship for finite populations in the special
se where maximum ignorance is assumed. This equation appears as equation (4)

PSN 1 (with appropriate adjustments for the definition of M). Equation (5)
the present note is a statement of one alternative to the maximum ignorance
sumption. Equation (3) and equation (5) taken together generate equation (4),

ich is a particular numerical example presented verbally in paragraph 3 of
N1,

VEVNOOOAD MK I —

el
and

Before proceeding to develop mathematical models of other alternatives

to the maximum ignorance assumption it might be helpful to consider graphical
representations of the two supplementary information states already discussed.
The maximum ignorance assumption, given by equation (2), is shown in Figure 1.
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(0,0) N

Figure 1. The maximum ignorance assumption.

The state of supplementary knowledge assumed in the particular example discussed

in
is

12

the opening paragraphs of PSN 1, given by equation (5) in the present note,
shown in Figure 2.

A’I

(0,0) 50,000 100,000
! —

Figure 2. An alternative to the maximum
ignorance assumption.

(Homogeneity.) Let us now develop values for the AI in equation (3) to

correspond to some other alternatives to the maximum ignorance assumption.

We

will use some of the specific examples already discussed in paragraphs 3 and
above., Consider for example the case of a population which is known, from
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whatever source, to be at least 100f% homogeneous (cf. paragraph 3, above).

If at least a fraction f of the population is completely alike in the respects
of interest, say with respect to those features of its design and construction
which are relevant to its being able or not being able to operate successfully
in a certain harsh (e.g., EMP) environment, then either

a. the fraction of the population which will be able to operate
successfully in the harsh environment is greater than or equal
to f, or else :

b. the fraction of the population which will fail in the harsh
environment is greater than or equal to f.

The second of these two conditions may be restated in the following equivalent
form:

bf. the fraction of the population which will be able to operate
succe:sful1y in the harsh environment is less than or equal
to 1-f.

Let P now denote the (unknown) fraction of the population which actually will
be able to operate successfully in the harsh environment. Then the assumption,
or supplementary information, of population homogeneity in this respect is seen
m conditions b’ and a to imply that

P g 1-f v f

A
-
L3

not consider any population with the property that 1-f <P < f .11 Recall
that the quantity I in equation (3) represents the number of satisfactory

nts in a population from which the sample of L might have been taken.
Therefore the fraction satisfactory in a population represented by any single
in equation (3) is I/N. Thus the homogeneity assumption tells us that we
not consider any terms in equation (3) with I such that 1-f < I/N < f .
that is, with I such that (1-f)N < I < fN . Therefore we set AI = 0 for those

terms. On the other hand, a homogeneity assumption by itself does not give us
any reason to favor any one of the remaining population candidates over any
other., Therefore we give AI a constant (non-zero) value for all remaining

s. In conclusion, therefore, we can represent the homogeneity assumption
of paragraph 3, above, with the following mathematical expression:

0 if (1-f)IN<I <fN
o - { 6112

1 otherwise

Graphically, therefore, the homogeneity assumption appears as in Figure 3.
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(0,0) (1-fN N2 fN N

] —>

Figure 3. The homogeneity assumption,

13, (Step optimism.) In paragraph 8 of PSN 1 we said we would use the term
“reliability" to mean a lower bound on the fraction P of the population elements
which will perform their missions successfully. 1In paragraph 4 of the present
note, above, we discussed the possibility of having information, from some
other source than direct full system testing, which might make us want to
incorporate in our calculations an asswmption of population reliability.

Le Ro denote this value of 3 priori population reliability. Then Ro is the

greatest number such that we know, from information available from some other
source than the direct full system testing which is to furnish the values of L
and M in equation (3), that

-

(Since 0 ¢ P ¢ 1, this definition of R0 tells us immediately that Q < Ro

no matter how weak or trivial the supplementary information may be.) Therefore
we need not consider to be a possible source for the test sample any candidate
population in which P < Ry - Therefore when evaluating equation (3) with this

kind of supplemental information we can neglect all terms in which I/N < Ro ’
that is, terms for which I < RON . Therefore we set AI = 0 for those terms,

If no information is available which would give us reason to favor any one of
the remaining population candidates over any other then we give AI a constant

(non-zero) value for all terms representing those remaining candidate populations.
Thus we can represent supplementary reliability information mathematically by
setting

)12 .

0 if I« RON
A = (8

1 otherwise
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Graphically, therefore, such an assumption looks 1ike this:

(0,0) RoM N

[ —>
Figure 4. The step optimism assumption.,

(Linear optimism.) 1In the last two paragraphs we have developed
mathematical models for two of the supplementary information states mentioned in
paragraphs 3 and 4, above. Let's model just one more of those example states,
paragraph 4. Assume that we have information, from some other source

the full system testing, from which we deduce a confidence in P which is
ctly proportional to the value of P. Thus if 0 < P] < P2 <1, and if in

P2 = k*P1 » then we are here assuming that the suppliemental information is
that we have, a priori, k times more confidence4 that P = P2 than we have
P = P] (for values of P1 and Pz compatible with N < = ), To grasp this

ation intuitively, consider again Sam and his marbles (cf. the Appendix).
time grant that we know he has three barrels, viz., the two he had before
one new one of 100,000 solely white marbles. So the new arrangement is,

as two barrels for which P =1 and still only one for which P = .5 (for

nition of P in Sam's case, cf. paragraph 8, above); N = 100,000 for all

e barrels. The reader can probably see already how the argument will go

ogously to that in the opening paragraphs of PSN 1. The details are

efore relegated to footnote 13. Here we will instead pursue the consequences
equation (3) of this particular supplementary information., We see that it
ires that candidate source populations containing 100,000 white marbles have

ice as much representation as those containing 50,000 white marbles. That is,

we should consider twice as often in equation (3) any term giving the probability

of obtaining the given test results from an all-white-marbles population as we

do any term giving the probability of obtaining the given test results from a
half-white-marbles population. Therefore the supplementary information requires
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AIOO,OOO = Z*ASO,OOO « And we still need no representation at al} for

populations containing any other number of white marbles. We can satisfy
these requirements by setting

2 for I = 100,000
Ap = {1 for 1=50,000 (9)12 |

0 otherwise

Graphically this looks like:

2 -
T ].‘
Ap
(0,0) 50,000 100,000

[ ———>»

Figure 5. Another alternative to the maximum
ignorance assumption.

It 1s easy to extend this example to the case in which the prior information

is that the barrel of marbles before us came from a class of barrels (the rest
of which need not actually exist at the time of the sampling: cf. footnote 13)
amoEg which were exactly I barrels containing I white marbles each (the
remaining marbles in each barrel being black) for all integers 1 such that

0 <I<N. Thus we can represent an assumption of linear optimism (with zero

constant]4) mathematically in equation (3) by setting

AL = 1 Vi (10)'2
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vThe graph of this is:

(0,0) N

I ——

Figure 6. The linear optimism assumption
(with zero constant),

It would be quite easy now to continue with this example, extending it to the
case in which AI = I+K (for any non-negative integer value of K,14 for al1 1
such that 0 < I <N ), or to the case of 1inear pessimism ( AI = -]-K ), or
to the cases of non-integer and non-linear relationships between AI and 1.

However, we should by now have enough examples to make the idea clear. Let us
therefore proceed instead to illustrate the case in which there is more than one
kind of supplementary information of which we wish to take account.

15. (Homogeneity and step optimism.) An example of a combination of kinds of
supplementary information might be a situation in which information is available,
from some other source than the system test, which a priori guarantees some
fraction f of population homogeneity, and other information is also available
which (independently) assures us of some value Ro'of a priori population

relfability. Recall from paragraph 12: "“Thus the homogeneity assumption tells
us that we need not consider any terms in equation (3) with I such that . . .
(1-f)N < I < N ." And from paragraph 13: "Therefore when evaluating

equation (3) with . . . [step optimism] supplemental information we can
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neglect all terms in which . . . I < RON ." Therefore, if information is

available which warrants making both the homogeneity and the step optimism
assumptions simultaneously, we set Ap =0 for all I such that (1-f)N < I < N

and for all I such that I < RON . On the other hand, these two assumptions by

themselves do not give us any reason to favor any one of the possible source
populations represented by the remaining terms over any of the others.
Therefore, as before, we give AI some constant (non-zero) value for all

remaining terms. Thus we can represent an assumption of both a priori
reliability (i.e., step optimism) and homogeneity mathematically by setting

N

0

0 if (I-FIN<I<fN or I<R
A = { 12

1 otherwise,

Thus there are three possible graphs of this combination assumption, one for
each of the three possible cases, viz., RON below, in, or above the interval

((1-f)N,fN). For the case in which RO" < (1-f)N the graph is:

' !
N (1-F)N N/2 fN N

(0,0) R

]

Figure 7. The assumption of homogeneity and
step optimism, for Ro+f <1.
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For

"And

the case in which (1-f)N < RN < fN the graph is:

| ]
(O’O) . (]'f)N RON fN N

I —>»

Figure 8. The assumption of homogeneity and
step optimism, for 1-f < RO <f .]]

for fN < RON < N the graph is:

| o {
(0,0) (1-f)N N/2 fN RN N

I —>»

Figure 9. The assumption of homogeneity and
step optimism, for f < R0 .

It should be noted that under the conditions of this last graph the homogeneity
assumption {s weaker than, and is in fact implied by, the step optimism

asst

umption. Therefore if the supplementary information is such that f < R0 ’
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and if only homogeneity and step optimism are being considered, then we might as
well disregard all supplemental information except that which warrants the step
optimism since only this latter will affect the values of the AI in equation (3).

16, (Step optimism and linear optimism.) Another example of a situation in
which there is more than one kind of supplementary information to take into

account is the case in which the supplementary information warrants both step
optimism at R0 and, independently, that large fractions satisfactory are more

1ikely than small fractions satisfactory. For this latter kind of information
we might as well use again the example of linear optimism (with zero constant)
discussed in paragraph 14, above. Then these two kinds of supplementary
information, if both are present together, correspond to the situation in which
the barrel of marbles before us came from a class of barrels (the rest of which
need not actually exist at the time of the sampling of L marbles from one barrel:
cf. footnote 13) among which there were exactly I barrels containing I white
marbles each, the remaining marbles in each barrel being black, for all I such
tha Roﬂ < I <N, and no other barrels. Thus we can represent an assumption

of both step optimism and 1inear optimism (with zero constant) mathematically
in equation (3) by setting

{ 0 if I« RON
AI =
I otherwise

(12)12 .

The| graph of this is:

(0’0) RN . N
I —»

Figure 10. The assumption of step optimism and
linear optimism (with zero constant).
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7. (Homogeneity and linear optimism.) In the foregoing paragraphs we have
eveloped in detail several examples of how to incorporate supplementary
nformation into the mathematical reliability-confidence model represented by
quation (3). We have looked at assumptions associated with such supplementary
information both singly and in combination. Let us conclude our consideration
f how to construct such supplementary information models by presenting the
dels for two other combinations of assumptions, and then get on to some
calculated results. (It is assumed that by now the reader is well able to
supply the arguments necessary for developing these models.) If supplementary
information is available which warrants botk the assumptions discussed in
paragraphs 12 and 14, above, and only those, then the values of AI to be used
in equation (3) are given by:

anl12

0 if (1-f) <1 < fN
Ap =

I otherwise

The graph of this is:

I |
(0,0) (1-f)N N/2 fN N

[ —>»

Figure 11. The assumption of homogeneity and
linear optimism (with zero constant).

Page 18 of 31.

O



18, (Homogeneity and step optimism and 1inear optimism.) If supplementary
information is available which warrants all three of the assumptions discussed
in paragraphs 12, 13, and 14, above, and only those, then the values of AI to

"be used in equation (3) are indicated by Figure 12,

‘ i [ -
(0,0) RN (1-F)N N2 fN ' N

I —>»

Figure 12, The assumption of homogeneity,
step optimism (for R0+f $ 1), and

linear optimism (with zero constant).
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(Calculated results.) So far in this note we have considered the maximum
ignorance assumption (paragraphs 1 and 2), possible sources of supplementary
information which could warrant various alternatives to the maximum ignorance
umption (paragraphs 3 through 5), and how some of these example alternative
umptions can be modeled mathematically in the case of finite populations
ragraphs 6 through 18). Let us now compare the quantitative effects of such
ernative assumptions on the reliability-confidence relationship. In order
make this comparison we will select eighteen specific examples of possible
ernative assumptions and see what numbers they, and the maximum ignorance
umption, produce for a few kinds of possible test results, i.e., for a few
s of possible values of N, L, and M. Note that in the development of the
ory up to this point we have not made use of any large sample or large
ulation assumptions or approximations (except in one example which is worked
in footnote 10). Therefore the theory which we have developed is as valid
the smallest non-negative values of M < L < N as for the largest.

le 1 assigns Roman numeral names to the various specific assumptions chosen
examples for comparison. Since this theory covers a problem in many
ensions (cf. paragraph 10 of PSN 1), it is difficult to present an

austive comparison on a few two-dimensional sheets of paper. Therefore we
will concentrate on cases in which very little full system test data is
available, i.e., cases in which L is very small, since it is under these
circumstances that any supplementary information at all is most valuable.
Figures 13 and 14 and Table 2 present this selection of calculated results,

20. (The infinite population case: N = w .) PSN 2 treats confidence and
reliability in infinite populations (or finite populations sampled with
replacement; sampling is independent. in either case), subject to the maximum
ignorance assumption. (Cf. the preface, and also the last sentences in
paragraphs 8 and 9, of that note.) Let us define C(R) for infinite populations
in the language of PSN 2, thus:

CR) £ C(R,1,L,M) .

This definition conforms to the usage up to this point in the present note, and
also to that in PSN 1 (allowing that M is defined here to be the number of
successful tests). Using this definition, then, a generalized statement of
tion (4) in PSN 2 is:

1 B
[ #(0) ™ (1-p)-" ap
C(R) = —R (1a) ,

[ to) 2 (1-p)tM ap
Y0

where f(p) is the weighting factor for an infinite population corresponding to A
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*lg 40 |2 3beg

Value of any
parameters of
the assumption

Table 1. Some examples of alternative assumptions upon which the
reliability-confidence relationship might be based.
Number of the
Roman equation which is the
numeral mathematical model
name  Verbal statement of the assumption of the assumption
I. Maximum ignorance. (I.e., the population is
dichotomized by the analyst, and population elements (2)
“fail" independently of one another, but
no assumption is made about population distribution.)
II. Homogeneity. (I.e., a fraction of at least f of the popu- (6)
lation is alike in the respects of interest, good or bad.)
III. Homogeneity. (6
Iv. Homgeneity. L] L ] L] . L Z - ® » . L] L 2 L[] * L] * Ll L] * . * L ] * L] L] L] L] - * * (6
V. Homogeneity. (6
VI. Homogeneity. (6)
VII. Step optimism. (l.e., R0 is known, prior to consideration (8)
of results of full system testing, to be a lower bound on P.)
VIII. Step optimism. (8)
Ix. Step optimi Sm. L ] L ] * L] e L] L] L] L] L] L 2 * L ] L ] - .‘ L] L2 L] L] L] L ] * . L] * * L] (8)
X. Step optimism, (8)
XI. Linear optimism (with zero constant). (I.e., there exists some
-- any -- real number a > 0 such that T(p) = ap for (10)
0<psi.t '
XII. Step optimism and linear optimism (with zero constant). . . . . . . . (12)
XII1. Step optimism and linear optimism (with zero constant). (12)
XIV. Step optimism and 1inear optimism (with zero constant). (12)
XV. Step optimism and linear optimism (with zero constant). (12)
XVI. Homogeneity and linear optimism (with zero constant). . . ... ... 513)
XVII. Homogeneity and linear optimism (with zero constant). 13)
XVIII. Homogeneity and linear optimism (with zero constant;. - (13)
XIX. Homogeneity and linear optimism (with zero constant). (13)

L

- en i -

f = 75%
f = 80%
. f=285%
f = 87.5%
f = 90%
Ry = 50%
R0 = 65%
. RO = 70%
'RO = 75%
. RO = 50%
RO = 65%
R0 = 70%
R0 = 75%
f = 75%
f = 80%
f = 857
f = 87.5%
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Figure 13, Confidence as a function of reliability

for four different states of prior
information, with N = 300, L = 1, and M = 1.

Page 22 of 31.



O

Confidence C(R) __o

(in percent)

100

90 —

80 -

70 —

40 —

T T T I ] ] I ) T
(0,0) 10 20 30 40 50 60 70 80 90

(in percent)

Figure 14, Confidence as a function of reliability

for four different states of prior
information, with N = 300, L = 2, and M = 1.
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Table 2.
Number of uniformly successful tests (i.e., L with M = L) required for a O

confidence of at least C(R) in reliability R, assuming population size

N = 250 im_c_l:
R = 80% R = 85% R = 90%
C(R) = C(R) = C(R) =
Assumption: 80% 85% 90%  80% 85% 90%  80% 85% 90%
I, 6 8 9 9 1 13 14 16 20
viI. 6 8 9 9 1 13 14 16 20
XI. 6 7 8 8 10 12 1315 19
VIII. 5 7 9 9 N 13 14 16 20
XII. 5 7 8 8 10 12 1315 19
IX., 4 6 8 8 10 13 14 16 20
XIII. 4 6 8 8 10 12 1315 19 O
X. 4 5 8 8 10 13 14 16 20
XIV. 3 5 7 709 12 13 15 19
XV, 3 4 7 79 12 1315 19
11. 2 3 s 79 12 13 16 20
XVI. 1 2 4 6 8 11 1215 19
111, 11 3 6 9 1215 19
XVII, 11 2 5 8 N8
v, 11 11 g 1 16
XVIIL. 11 R T 7 10 1s
V. 11 11 2 4 10
XIX. 11 I T 1 3 9
V. 11 11 11
Page 24 of 31. @




in equation (3) of the present note for a finite population. The discussions

of P

SN 2, throughout which f(p) = 1, can be easily adapted to those alternatives

to the maximum ignorance assumption cited in the present note. For example,
assumptions of homogeneity or of step optimism are taken account of simply by
appropriate adjustments to the limits of integration in equation (14), above,
Since f(p) for those assumptions is given by

equ

0 if (M-f)<p<f or pc< R0

1 otherwise

f(p) = {

(cogpare with equations (11), above), the case R0 SR < 1-f immediately makes

tion (14) become:

1-f 1

f Mt M ap 4 f o (1)t gp
C(R) = ——R —f

1-f 1

[ o (1-p)tMap + f o (1-p)tM gp

Ro . f

The other cases for homogeneity and step optimism produce similar variations of

equ
(wi

(co

tion (14), As a concluding example, the assumption of 1inear optimism
h zero constant) is handled equally easily:

fip) = »p

pare with equation (10)) yields

el

1
p p" (1-p)-M dp f p'tt! (1-pyt-M dp
= R .

R =

R
1 1

f pp" (1-p)t-H dp f P! (1.p)t-M dp
0 0
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Footnotes

Another problem in using the maximum ignorance assumption is the question
Just how one should go about using 1t. This question has been hotly debated
the past, and will be debated again in the future. It is the question of

w one should behave when one has no data at all about the population, other
an an adequate specification of it (i.e., an ultimately extensive, or
experimental, definition of it), This series of notes has used a widely
cepted answer to the question, viz., that in the case of maximum ignorance
suggested value of population dichotomization fraction (or equal length
terval of possible fractions) should be accorded any greater confidence
an any other, i.e., that all possible values of that fraction (or equal
ngth intervals of possible values of it) merit equal confidence under
maximum ignorance. It is not the purpose of the present note to defend this
answer, nor how we have been applying the maximum ignorance assumption up to
now; for the present we will simply let the arguments of the notes speak for
themselves. However, explicit treatment of the issue is to be included in a
future Probability and Statistics Note. References will be cited as part of
that treatment. (Cf. also footnote 9, below.)

T O —

b ot ~h 3

2. By Stephen M, Pollock, Associate Professor, Department of Industrial and
Opgrations Engineering, University of Michigan, on 9 August 1973 in an
Operations Research seminar, for example.

3. Cf. PSN 6.
4. As defined in PSNs 1 and 2.

5. The word "deduced” is used here to emphasize stongly that one should be able
to justify such stronger assumptions quantitatively with rigorous logic from
available hard data. Honest science prohibits employing such an assumption when
applying confidence theory just because one "has a feeling things are that way"
("subjective" or "personal" probability to the contrary notwithstanding).

6. These variable names were chosen for convenience in FORTRAN computer
programming of equation (3), since these variables have integer ("fixed point")
values. Mnemonics are: "“L" for "little x" (in the notation of many textbooks
in probability and statistics); "M" for "mistakes" or "mishaps"., In view of
the redefinition of M which occurs in PSN 2 and also later in paragraph 6 of

the text of the present note, perhaps a better mnemonic for that variable name
would now be "M" for "memorable®.

7. Cf, paragraph 4 of PSN 1, which is reproduced as paragraph 4 of the Appendix
to the present note.

8. Except that for the sake of efficiency in calculation the Timits of summation

were selected to exclude those terms which can be seen beforehand to be forced
to zero by the input parameter values. Cf. paragraphs 7 and 8 of PSN 1.
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9. The reader may recognize this generalized reliability-confidence expression
as the special case of Bayes' Theorem for finite populations where sampling is
without replacement. Cf. A. Bruce Clarke and Ralph L, Disney, Probability and
Random Processes for Engineers and Seientists, p. 38, equation (2.14). The
quantity Pr[AlBij in that equation is provided by expression (2,20) on p. 43 of

that reference, and the quantity Pr[Bij is a submultiple of AI in equation (3)

of the present note. (Cf. also footnote 13 of this note.) To see a more
general statement of equation (3), cf. Athanasios Papoulis, Probability, Random
Variables, and Stochastic Processes, p. 111, equation (4-75); it is the
quantity f(p) in that equation which is the submultiple of ‘A; in equation (3)

of the present note. (Cf. also paragraph 20 of the present note, especially
tion (14).) -- Incidentally, Figure 4-21 on p. 113 of this Papoulis

rence also treats the same general subject as the present note. And on

112 to 114 of this reference the reader can also find some discussion of
case against using equation (3) with the maximum ignorance assumption

ation (2), or f(p? =1 VYp). The same argument is also presented, from
her point of view, by William Feller in An Introduction to Probability

ry and Its Applications, Volume I, the note on pp. 124, 125, A more

iled treatment of this argument, among others, is presented by John Maynard
es in A Treatise on Probability, especially in Chapter IV, The core of all
se objections is that one must have some rationale for assigning values to
AI in equation (3) of this note, or to f(p) in equation (14), before he can

uate the equation. The present author agrees with the objection, stated in
form. However, it is to a considerable degree irrelevant to the discussion

his note, which is devoted to alternatives to the maximum ignorance

mption, since we are here explicitly assuming that supplementary information

vailable which provides values for the AI (or f(p)): cf. footnote 5, above.

rding the debate in general, cf. footnote 1, above.

Cf. the first four lines of paragraph 21 in PSN 2, which give us that
Q,1,1,1) = 20-0%. Letting R = 1 and Q = 0 therefore permits us to weite

= C(1) = €(1-Q) = €(1-Q,1,1,1) = 20-Q% = 2.0 - 02 = 0, provided N = = ,
this result gives an adequate approximation for the case in which
100,000 may be seen by considering paragraph 24 of PSN 2.

In the text f is defined to be a known lower bound either on P or on 1-P,
e P is a fraction in the interval [0,1] we know that .5 < P or .5 < 1-P ,
efore it is trivially true that .5 is a lower bound on P or on 1P,
equently we might as well consider only f such that .5 < f . This much we

from definitions, without recourse to any supplementary information or
mptions. Therefore supplementary information which assures more than

trivial homogeneity (in the respects of interest) in the population must assure
something stronger than .5 < f . That is, we might as well consider only
homogeneity information or assumptions which assure

5 < f .
An immediate consequence of this is that 1-f < f .
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12, It is true that this way of satisfying the requirements for AI is not

unique. In fact, 1f we use AI in equation (3) in place of A » where AI 2 r*AI

4 I, for any value of r # 0, then the requirements will still be satisfied.
ever, the quantity r may then be factored out of both the numerator and the
denominator in equation (3) and cancelled. Consequently computational results
are wholly unaffected by such substitutions, These comments apply to all
mathematical models (given by the values of AI) of supplementary information

states, including of course the others developed as examples in this note.

As before, Sam then puts only one of these barrels in front of us. In

this new experiment let's have Sam now destroy the other barrels before anything
happens. This makes the situation even more analogous to real 1ife, since
next steps then occur with only the single barrel of marbles in existence
ich we have before us. Next we select one marble "randomly from the well

red" barrel presented to us, and observe that it is white, This time we

W we could have taken one white marble from one of the two white barrels

e could have from the one barrel containing only 50,000 white marbles,
onclude that we should be four times more confident that we have an

white barrel before us than that this barrel is only half white.

rically, then, the supplementary information plus the given experimental

Tts lead us to be 80% confident that all the marbles are white in this,

the only existing, barrel of marbles (and 20% confident that only half of
are white). Computation will show that this result agrees with the figures
ded by equations (3) and (9), with N = 100,000, L =1, and M = 1.

Since we are, in this part of the note, considering only finite populations,
n have one of only a finite set S of discrete values, viz,, S = { %-, %-,

Noree s » %'} . Let C(p) denote our confidence, prior to consideration

of the results of full system testing, that P = p . Then a general statement
of linear optimism would be that there exist real numbers a > 0 and b2>0
such that

- ap+b 1if p e S .
C(p)={ .

0 otherwise

Let C’(I) denote our confidence, prior to consideration of the results of full
system testing, that NP = I ., Then

C(p) = C'(Np) = C*(I) .

Since the index I of summation is defined such that I = Np , we have that
p= é-. Consequently the last equation may be rewritten
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ci(n = &h

s N . Using these facts we can now write the general
ptimism, above, in an alternate form, viz.,

3
per —
o
=
—
e
3
n
w»
“3
O

a*%-+ b for integers I » 0<I <N
0

otherwise

ally, note that AI = C’(I) . Or, by footnote 12, we can as well let
= g- C’(I) . Then

« N I Nb -
AI -a-(a*ﬁ*b) = I"'i‘- .

A1l the cases of supplementary information involving 1inear optimism

ch are developed as examples in this note happen to have the constant b

the equations above set to zero. It is for this reason that the phrase

th zero constant" appears repeatedly in the text. The physical interpretation

this is simply that G(0) = 0,
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Appendix

n

rom Probability and Statistics Note 1:

Some Notes on Confidence and Reliability in a Finite Population.

1, Your friend Sam has two barrels which contain 100,000 marbles each,
all identical except for color. You know that all the marbles in one of
these two barrels are white, and that the other barrel is evenly divided
tween 50,000 white marbles and 50,000 black marbles, all stirred up

11 together. Sam puts one of these barrels in front of you, but he
esn't tell you which one. You reach in without looking and pull out a
eat big double handful of marbles. If this double handfull of well
irred marbles, say 100 of them, was solid white, didn't contain a single
ack marble, then you'd be pretty convinced you'd had to deal with the
rrel that had nothing in it but white marbles.

Another example which is even more obvious is two barrels of sand,

one of which all the grains are white and in the other of which only
1f are white and the other half are black, but otherwise identical.

the mixed barrel is thoroughly stirred, so that any grain you choose
blindfold is truly random, and the barrel as a whole has a salt and
pepper appearance, then a double handful which was perfectly white,
showing not a single black grain would pretty much persuade you that you'd
been offered the homogeneous barrel to choose from. :

T e N ouvwauazo

Let's quantify. Recall the barrels of marbles. If you drew out only
marble and it was white, then you'd take that as a more mild indica-
n that it came from the completely white barrel. The reason is that
re are twice as many ways for you to pull a single white marble out
that barrel as out of the mixed barrel, so it would be twice as likely
'd draw a white marble from the white barrel. (Read that sentence

in.) In fact, we say your confidence in_ having had the white barrel

in front of you was in this case precisely twice as great as your
fidence that the mixed barrel has been. Numerically, you'd be

% confident that you'd had to deal with the white barrel.

Now consider Minuteman. Assume there are exactly 1000 missiles in
fleet, and you have no idea what the number of defective missiles is
ore you begin to test. So you pretend that someone has 1001 different

ets of Minutemen (each fleet analogous to a barrel in the examples

ve), and that in each of his fleets there is a different number defec-

e, from 0 through 1000. And you pretend that he has put one of these

ets in front of you, so that the number defective in the fleet you

e to deal with could equally likely be any number from 0 to 1000. You

duct a test of L sites and discover that M of these L a?? \Hﬁfective.
non- .
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Definitions of Symbols

Meaning

is defined to mean

implies and is implied by
logical "OR" (weak disjunction)
is a member of

for all

such that

"times" (i.e., ordinary multiplication; this operation is also
indicated in some places by juxtaposition)
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