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Abstract

An approach to the problem of quantifying confidence in system
reliability, as calculated from experimental data on system components, is
presented. Some numerical results are calculated as examples.
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Introduction

It is fairly common knowledge that if a system consists of a series
of independent 1inks, then the probability that the system will work is
the probability that all the links will work, and that is the product of
the individual 1ink probabilities of working. Similarly, if a system
consists of independent 1inks arranged all in parallel with one another,
then the probability of system failure is the probability that all the
Tinks will fail, and that is the product of the individual 1ink probabil-
jties of failure. :

Unfortunately for these simple probabilistic network models, however,
the individual 1ink probabilities of success or failure can in real 1ife
never be known certainly. Instead, one usually has available some finite
amount of success-failure data on links of the types in the system. This
data leaves one more or less confident of any given suggested value of the
probability of success or failure for a link. Consequently, when the
proposed 1ink probabilities are multiplied together there is some confidence
(or lack of it) to be associated with the product.

In this note expressions are derived directly from basic definitions
and axioms by means of which one can quantify such confidence.

(Equations (14), (17), and (23) of this note were first presented by
the author in interoffice memoranda dated 5 and 6 October 1972.)

Page 3 of 27.




Some Notes on Confidence in System Reliability.

Part I. Preliminary definitions.

1. (System.) The word “system" will be used in this note to refer to a
finite set of elements which has some purpose or job to perform. An
example might be the set of components of a transmission system.

2. (N.) Let N be the number of elements in the system, i.e., the
cardinality of the system. (Note that an element of a system is itself
a subsystem, and that for the latter system N = 1.)

3. (To work.) In this note a system will be said to "perform successfully"
or, more briefly, to "work", if it satisfies its purpose. Whether the pur-
pose is satisfied is a judgement which must be made by the person who
decides the purpose. An example might be that a transmission system must
relay a unit of goods without damage, e.g., a unit of information without
excessive distortion. (Note that when a system is an element in a larger
system, then the purpose of the subsystem is to do whatever it must, given
that sufficient other elements are working, to enable the larger system to
perform successfully.) A system or element will be said to "fail" if it
does not work.

4, (ei.) Let e; be the name of the jth element in the system.

5. (Ei') Assume that ey has been selected at random for inclusion in the
system from a population of candidate elements of that kind. Let E1 be
the name of this candidate population. For example ey might be a micro-
wave relay 1ink in an information transmission system selected randomly
from a production 1ine run E1 of many such links to be put into the 1th
position in the system. (In this case one could have E1 = Ej for 1 # j.)
As another example, ey might be a component of a transmission system in

a particular state, where the component (and therefore the system) changes
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states with time. Then the population 51 from which e; 1s taken at a
randomly selected instant is the set of instant-states (not necessarily
distinct) in which that component might be at any instant. (In this latter
example E1 has as many members as there are instants of time in which the
component exists in one state or another.)

6. (Ni‘) Let N1 be the number of elements in Ei’ i.e., the cardinality
of E
1.

7. (Pi') Let P1 be the fraction of elements in Ei which work.' (In the

second example in paragraph 5, above, therefore, Pi is the fraction of time

in which e; works.) P, is then the probability that a "randomly selected"
{ i E_T_______JL

member of E1 will be a working member.

8. (Li‘) Let Li be the number of elements of Ei which have been tested and
ascertained either to work or not to work.

9. (Mi') Let M1 be the number of elements of E1 which we have tested and
ascertained to work. Thus,

M1 S Li < Ni

fOf' a]" i € {];2, cee e .N}o

1. Note that P1 is a fixed, though unknown, number in the interval [0,1].
Its value is determined by the character of the population Ei' and not by

either our data nor our state of information on the character of the
population from any other source. All the usual concepts and theorems
from probability theory apply to Pi‘ One of these concepts to which we will

have occasion to refer later is that of probability independence (cf.
Reference 1, p. 40, equation (2-40)).
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10. (Ci(pk’pz'Li'Mi)’) Let the confidence which one may reasonably have (:)
that

inkﬁp‘zs] .

By a "reasonable" confidence function we mean here one which satisfies three
confidence axioms and a confidence requirement listed in paragraphs 10 and 11
of Reference 2.2 It has been proved in earlier notes (cf. equations (4) in

References 3 and 2) that
"i%-p)r( I )(Ni-I)"
I<M LM/ \ My /]

i 3
N; <o =D C.(p,1,L;,M;) = (1)
i i i Ny-Ly#Ms O

LU0,

and

2. The reader may note here that we are drawing a distinction between
probability and confidence, where the latter is, unlike the former, a
function of our data, or general state of information about the population
(cf. footnote 1, above). This distinction is what defines the dualist
school of thought in probability theory: cf. Reference 4, p. 8, the
paragraph beginning "Further historical note", and Reference 5, p. 622,
the first through fourth complete paragraphs on the page. More detailed
treatment of this issue is to be included in a forthcoming System Design
and Assessment Note; additional references will be cited there.

3. The difference between the appearances of equation (1) in this note and
equation (4) in Reference 3 is due to the difference in definitions of M.
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N-] = = =D ci(p’]’Li’Mi) = ? (2) .

From this point on in this note we will deal only with the case in which

Ni = forall ie (1,2, ... sN}. We do this so as to have to develop

only one sequence of formulas to illustrate the theory, because of the greater
interest of the second example cited in paragraph 5, above, and because the
corresponding formulas for the finite or mixed cases can easily be developed
by the reader completely analogously merely by using equation (1) instead of
equation (2) wherever appropriate. (The reader interested in the case of

Ni < » may also find Reference 6 helpful.)

n. (fi(p).) It will be helpful to consider the confidence density function
%5 [Ci(O’D’Li’Mi)]’ so we will give it a name: fi(p). That is,

£4) & &5 [C;(0,puLyaMp)] (3) .

Therefore, by the fundamental theorem of calculus (Barrow's Theorem),
1
Ci(p’]’Li'Mi) = ff,i(X) dx (4) .
p

Equation (2) permits us to write immediately
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M Ly-M
p i(l-p) R

M L,-M
fx i(1--x) T dx
0

f.‘(p) =

The denominator of this expression is Just the Beta function4, so the
expression can be written more briefly as

L M L,-M
fi(p) = (L1+1)(M’)pi(1-p)‘ ! (5) .
i

12. (P.) Let P be the probability that the system will work at a given
instant of time under given circumstances.

13. (C(pm,pn).) We define C(pm,pn) to be the confidence which one may
reasonably have that

given the experimental evidence {LI’MI’LZ’MZ’ ces ’LN’MN}‘ The purpose of
this note is to develop a way of calculating C(pm,pn). Confidence axiom III
(cf. Reference 2, paragraph 11) tells us that

Cl(PysPp) o (pys1)) = Clpy.p,) + Clp,,1)

for Pm S Py Therefore

4. Cf. Reference 7: p. 342, equation 33; p. 344, equations (18.5.1) and
(18.5.2); and p. 343, equation (18.3.2), third line. Or cf. Reference 8:
p. 104, equation 367; and p. 103, equation 365, second line.

Page 8 of 27.




ClppPy) = Cllpysp,) or (po1)) - C(pn,l)
= Cl(pysp,)U(p,s1)) = Clp,,1) =

= Clpps1) = Clpys1) (6) .

14. (C(R).) We will abbreviate C(R,1) by writing C(R) (R for system
“reliability"; cf. Reference 3, paragraph 8 as far as equation (3)). That is,

A
=

C(R) C(R,1) (7) .

There need be no confusion between the meanings of C as defined in this and
in the preceding paragraph since the number of parameters listed makes clear
which is intended. Combining equations (6) and (7), therefore, we have that

Clpyopy) = Clp,) - Clp,) (8) .

The rest of the note will be devoted to presenting a way of calculating

C(R) for some interesting kinds of systems, since with this and equation (8)
one can readily calculate C(pm,pn) for any 0 < Pm < Py s 1. By equation (4)
we can already write

1

N = 1 =D c(R) = .I.f](p) dp (9)
R

(cf. equation (5)).

18. (C1 j(Ri’Rj)') Let ci.j(Ri’ j) denote the confidence which we may
reasonably have that

By a "reasonable" confidence function we mean here, as usual, a function which
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satisfies the three confidence axioms and the confidence requirement (cf.
Reference 2, paragraphs 10 and 11).

16. (Confidence independence.) We will not in this note seek to find a
general expression for 01 j(Ri’Rj)' since this would involve digressing into
such concepts as conditional confidence. Rather, we will describe our
knowledge of P1 as independent of our knowledge of Pj iff

Ci’j(RpRj) = [C,‘(Ri,'l ’Li’Mi)] * [Cj(RjJ,LJ-, j)] ),

and then restrict the discussion from this point forward to cases in which
such independence is present. To paraphrase Papoulis (Reference 1, p. 40),
“the reader might find this definition of independence arbitrary; he might
even wonder if, in the case of real systems, there ever exists data satisfying
both equation (11) and the confidence axioms and confidence requirement."
Nonetheless we are in this note not going to undertake to develop exhaustive
and rigorous tests for confidence independence. Rather, we will here leave
it to the reader's engineering judgement to decide whether the data is such
as to make his confidence in one system element's probability of working
sufficiently independent of his confidence in another element's probability
to make equation (11) an adequate model.
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Part II. Series systems.

17. (Definition: series system.) A system will be said to be a “series
system" iff it is necessary in order for the system to perform successfully
that all of its elements work. As an example of a series system, consider
the transmission system represented by the following figure:

————————

Sender e Gl ... ey Receiver
———————————— ——————

Figure 1. Series system.

An ordinary chain would be such a system, for transmitting a force: if any
Tink fails to work, the chain won't work. A series of microwave relay links
in an information transmission network would be another such system.

18. (Confidence in series system reliability.) For N = 1 equation (9)
provides us with C(R). For N > 1 we are going to assume that Pi is independent
of Pj for all i,j e {1,2, ... ,N} and i # j (cf. footnote 1, above)s.

Therefore we may write

P o= Py %P, . %P .

5. Invocation of this assumption means that the reader is obliged to satisfy
himself that the elements in the real system of interest to him indeed have
sufficiently independent probabilities of working (or of failing). Otherwise
the model developed in this note may not be a good one for his system.
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Consequently C(R) is our confidence that

Rog Py*p, % . *p

2 N S 1 .

Consider first the particular case of N = 2. Then C(R) is our confidence that
R < P] * Pz s 1 (]2) .

There are several equivalent ways of writing this last expression. One which
we can use is

PrelRI] A Pye [%-1,1] (13) .

(The reader should satisfy himself that expressions (12) and (13) are equivalent
before proceeding.) Noting the similarity between expressions (13) and (10),
then, we see that C(R), for a series system such that N = 2, is just CI,Z(R’g')'
Assuming confidence independence (with due regard for the analogue of foot-

note 5, above), and so invoking equation (11), and also equation (4), therefore,
we have that

1 1
N = 2 =D C(R) = f ff1(p])*f2(p2) dp]dpz
la 2R
p]°R pz p1

(cf. equation (5)). Similarly C(R) for general N for series systems can be
written as equation (14) (on the next page).
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*[2 40 ¢| 9beq

1 1 1 1

C(R) = j f f . o o [ ' f](p])fz(pz)f3(p3)---fn(pn) dp‘ldpzdp3-"dpn (]4).
R R R

Pi=R Py=r— Py=o—o— PN o o

1 2 p] 3 p]pz N p]pz-"pn_"

(Cf. equation (5).)

Confidence in series system reliability.




19. (Example of calculation of confidence in series system reliability.)

Let us apply equation (14) to a specific, simple, not uncommon example. <:)
Suppose a case has arisen such that testing has been uniformly successful,

and the same number of samples were taken from all populations Ei.6 That is,

L] = L2 = ,,. = LN = MN = MN_1 = ,,, = M2 = M] .
Thus
f](p) = fz(p) 2 .. = fN(p) .
Define
A
M =L = Li = M,i

for 1 ¢ {1,2, ... ,N}. Then equation (5) becomes

filpg) = (L] = (L4l = ()l (15)
for all i ¢ {1,2, ... ,N}. Then equation (14) becomes <:)
1 1
C(R) = (L+1)V f f p...pf dpy..udpy, .
Py=R PN=5;77$5;:;

6. One way in which this situation can arise is if all elements in the
system were selected from some common population, for example microwave
relay transceivers from a single stockpile of like transceivers. Then

success-failure data on one 1ink, to determine the fraction of time it

spends in states in which it is vulnerable to upset, may in fact be

N
applicable to all links, so that L = 52 Li' Careful consideration must
=]
be given to the effects of the independence assumptions before proceeding
to apply this model to these circumstances, however.
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Let N = 2. That is, let the series system consist of only two series elements,

as in the figure.

————

Sender

Suppose L = 2 also.

C(R)

e e2 Receiver

Figure 2. A series system.
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Thus the confidence one may have that the circuit shown in Figure 2 is C:)
50% reliable, assuming L = 2 and M = L, is

C(.5) = 1 - (5301 - 320 (L5)] & 61.5069807% (17) .
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Part III., More definitions.

20. (Introduction to Part III.) The reader may note that this Part is quite
similar to Part I, above. In the interest of brevity, therefore, and to avoid
boring repetition, much of the analogous connective or explanatory material
will be omitted this time. The reader who would 1ike the help of such
material is advised to refer to the corresponding definitions in Part I.

21. (Qi’) Let Qi be the fraction of elements in E; which do not work. Q,i is
then the probability that a "randomly selected" member of E; will fail. Thus

o = 1-F

for all 1 ¢ {1,2, ... ,N}.

22. (C%(qk,q[_,Li,Mi).) Let the confidence which one may reasonably have that
qk < Q'i < Q£

be represented by C%(qk’qz’Li’Mi)’ where

C,; is related to Ci simply by reading "fail" for "work" everywhere, i.e., inter-
changing "Mi" and "L.i-M1 " everywhere. Therefore, by equation (4) in Reference 2,

9%

L;=M M
[x i i('l-x) i dx

9
1

L,~-M M
[x 1 1(1-x) i dx
0

C%(qk’qLQLi ’Mi) = (18) .
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23. (g9;(q).) Let

9;(a) = S [C3(0,q,L,.M,)] (19) .

Thus
1

Ci(a,1,L M) = [gi(x) dx
q

By equations (18) and (19),

L,-M M
¢! (1-q) !

L:-M M.
fx i i(l-x) T dx
0

91(Q) =

L L,=M. M
- (Lin)( 1 )q’ 1(1-q) 1 (20) .
L,-M

i

24. (Q.) Let Q be the probability that the system will fail at a given
instant of time under given circumstances. Thus

Q = 1-°P

Note that

P2R <D PR <D
E>1-P c1-r D

<ED @ < 1-1R (21) .
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25. (C'(qm,qn).) Let C'(qm,qn) be the confidence which one may reasonably
have that

9 ¢ @ < q ,

given the experimental evidence {L],M1,L2,M2, ces ,LN,MN}. As with
equations (6),

C'(ays9,) = C'(qpe1) - C'(q,1)

By expression (21), and using confidence axiom II (cf. Reference 2, paragraph
11), therefore,

C(R) C(R,1) =

C'(0,1-R) =

c'(0,1) - C'(1-R,1) =

1 - C'(1-R,1) (22) .
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Part IV. Parallel systems. C:)

26. (Definition: parallel system.) A system will be said to be a "parallel
system" iff it is sufficient for the system to work that any of its elements
work. It is easy to see that an equivalent definition would be, a system

is parallel iff it is necessary in order for the system to fail that all of
its elements fail (cf. DeMorgan's laws). As an example of a parallel system,
consider the transmission system represented by the following figure:

([ —————————r—

Sender Receiver

—————————t——

Figure 3. Parallel System.

27. (Confidence in parallel system reliability.) Comparison of the

equivalent definition of a parallel system in the preceding paragraph with

the definition of a series system given in paragraph 17 will show that the

two definitions are formally identical, except that for parallel systems the

word "fail” replaces the word "work" used for series systems. Consequently

the assumptions, including those of independence, and reasoning which led to
equation (14) yield a formally indistinguishable equation for C'(F,1) (F for
“failure" bound) for parallel systems, mutatis mutandis. Therefore, by equation
(22), C(R) for parallel systems can be written as equation (23) (on the next page).

Page 20 of 27. <:)




L2 30 |Z 9bed

b

1

. f 9] (q] )92(q2)93(q3)"'9N(qN) dq]dQZdQ3°--qu (23) .
1-R

1-R |
® W  Waaag

1
C(R) = 1- -[
S| =]

(Cf. equation (20).)

1
[I-R

Confidence in parallel system reliability.




28. (Examples of calculations of confidence in parallel system reliability.)

Let us apply equation (23) to the same example we looked at in paragraph 19,
above. That is, let N =2, L =2, and M = L, for the parallel system shown
in the figure.

e —

Sender Receiver

Sr——————

Figure 4. A parallel system.

Under these circumstances equation (20) becomes

95(ag) = (LNA-a)" = W)t = W) (1" =

= 3“"(31)2

for all i ¢ {1,2}. Then equation (23) yields

1 1
2 2
C(R) = 1 - 9[ (1-94) (1-9,) dg,da,
q]-.-]..R q2=l:-&

a9

The integration can be done analytically. It is straightforward, but tedious,

so we omit the details here. The result is

C(R) = 10(1-R)3+9(1-R)2-3(1-R) {6+ (1-R)2+6(1-R)+3]en(1-R)}
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Thus the confidence one may have that the circuit shown in Figure 4 is
50% reliable, assuming L = 2 and M = L, is

C(.5) = 10(.5)%+9(.5)2-3(.5)(6+[(.5)2+6(.5)+3]en(.5)} =
£ 99.8254817%

This result should be compared with equation (17); it provides an interesting
insight into the relationship between confidences in reliabilities of the
circuits shown in Figures 2 and 4. Further insight into the relationship can
be had by setting out to calculate confidence in reliability of the parallel
system shown in Figure 4, using equation (23), but with L = 2 and M = 0.
Equation (20) then becomes

gy(ay) = (L+1)at
for all i e {1,2}. Note the similarity between this equation and equation (15).
When one begins to evaluate equation (23) for R = .5 this similarity means
one is simply repeating the work in equations (16). The result is that the
confidence which one may have that the circuit shown in Figure 4 is 50%

reliable, assuming L = 2 and M = 0, may be had using equation (17). Thus

C(.5) = 1 - .615069807 = 38.4930193%
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Part V. Other systems. (:)

29. Taken together, formulas (14) and (23) in this note are adequate for
handling systems much more complicated than those represented by Figures 1

and 3. Consider, for example, the transmission system represented by the
following figure:

i

|

' 3

: Receiver
|

|

|

-
I
:

Sender & !
1
|
|
)
-

Figure 5. A series-parallel system.

Formula (23) can be applied to the part of the system inside the dashed box.
The dashed box then has a known confidence function, so equation (8) applies.
Treating the dashed box as a new single element ey, One then knows C4(pm,pn).
Differentiating this, numerically if necessary, by analogy with equation (3)
yields f4(p). Formula (14) may then be used with f1(p1) and f4(p4) to yield
C(R) for the series-parallel system. Many more complex finite systems
composed of single-input-single-output independent elements can be treated

in this way.

30. (Large N.) For small N there may be some hope of evaluating equations
(14) and (23) analytically, as in the examples in paragraphs 19 and 28, above.
However, for large N the integration in these formulas seems to become intrac-
table very quickly. Approximate integration in many dimensions can still be
achieved with the aid of a digital computer. Greater economy may be possible
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by clever application of Monte Carlo techniques. (Cf. Reference 9, pp. 88 to
90. Cf. also Reference 10, especially pp. 191, 192, and 224.) Assumptions
like that outlined in footnote 6, above, which yield L fj and g, = 93 for
many sets {i,j} = (1,2, ... ,N}, may lend even greater speed to a Monte Carlo
algorithm.
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Definitions of Symbols

Symbol Meaning
: is defined to mean
iff if and only if
= implies
<= implies and is implied by
A logical "AND"

H is identically the same as
£ is approximately equal to
[a,b] the closed interval from a to b

{asb,...,2} the set consisting of the elements a,b,...,z

€ is a member of

] union (of two sets)

= is a subset of

* "times" (i.e., ordinary multiplication; this operation is also
indicated in some places by Juxtaposition)

a al

b the binomial coefficient a over b (it is equal to 5T{a-p)T °

where a! & 1#2%3%...%3)
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