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Abstract

This note presents a method for determining a system proba-
bility of failure when the probabilities of failure of individ-
ual subsystems are known. The note shows how to obtain upper
and lower bounds on the system probability of failure when the
means by which subsystem failures combine to produce a system
failure are not known. The note also develops a "nominal" prob-
ability of failure for the case where the individual subsystems
operate independently to produce a system failure.
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INTRODUCTION

A general, complex system may have many fault modes (i.e.
modes of failure). These fault modes may be assoclated with
the failures of several independent or interacting subsystems.
This note presents a method for determining a system probabi-
1lity of failure when the probabilities of failure of -individual
subsystems are know. It is also assumed that the system con-
tains no redundant subsystems, that is, failure of any subsys-
tem will result in a system failure.

The note shows how to obtain upper and lower bounds on the
system probability of failure when the means by which subsystem
failures combine to produce a system failure are not known. The
note also develops a "nominal" probability of failure for the
case where the individual subsystems operate independently to
produce a system failure.

DISCUSSION

It will be assumed in this note that probabilities of fail-
ure of the subsystems are known. It should be noted that usu-
ally, only estimates of these probability of failure curves are
available, i.e. only a finite number of tests have been per-
formed to determine the subsystem probability of failure. This
more realistic case will be treated in a later note.

The subsystem probability of failure curves are assumed to
be of the form of figure 1.
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Figure 1 - Probability of Failure Curve
(General)

Examples of figure 1 might be the probability that a cer-
tain size of steel cable will break where the independent param-
eter is the tension in the cable. For this example, the cable
is one of the subsystems in an overall system that might be a
suspension bridge.

Another example might be the probability that a logic cir-
cuit will be upset where the independent parameter is the noise
voltage applied to the circuit input terminals. For this ex-
ample the circuit is one of the subsystems in an overall system
that might be a digital computer. ‘ .
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As a first example of computing the system probability of
failure, a system consisting of only two subsystems will be con-
sidered. Three different means by which subsystem failures
cause system failure will be considered; these will be the upper
bound, lower bound, and nominal value of the probability of sys-
tem fallure.

The system of interest is shown in figure 2.
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Figure 2 - System Composed of Two Subsystems

The two subsystems are the fllp-flops #1 and #2. They are
being upset by a noise voltage source. Their outputs are com-
bined by the digital logic to produce an output that may or may
not produce a system failure.

The probabilities of failure of the two subsystems can be
calculated versus the noise voltage level from the known, sub-
system probability of failure curves. The probabilities of fail-
ure of the two flip-flops are shown in figure 3.
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Figure 3 - Probabilities of Failure for 'Individual Flip-Flops

It is desired to combine the individual probability of fail-
ure curves of figure 3 to obtain one system probability of fail-
ure curve. : :




— ——— et g L [ P TR | B SRR LA AT Ll

&

CASE 1: INDEPENDENT SUBSYSTEMS

It is assumed that a failure of either subsystem 1 or sub-
system 2 or both subsystems 1 and 2 will cause a system failure.
Then the event that the system fails is the event that subsystem

1 fails or subsystem 2 fails or that both subsystems 1 and 2
fail. ‘

Let A = the event that subsystem #1 fails, B = the event
that subsystem #2 fails, and C = the event that the system fails.

The region of system failure can be shown with the Venn
diagram of figure 4.
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‘Figure 4 - Venn Diagram Showing Independent
Subsystem Failures

C=A+B- (ANB) ' (1.)

From equation 1 it is possible to write the probability of
failure of the system as

P, =P + P - P : : w (24)
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where

R
|

F probability of system failure,

o
!

probability of failure of subsystem l,

g
]

probability of failure of subsystem 2,

and

P = probability of failure of subsystem 1 and subsys-
F.NF ainc
172 tem 2.

Rewriting the last term of equation 2 gives

From figure 4 it is seen that : ‘ ' (:)




P = P * P =P e P _ (3.)
F,NF, F1|F2 F, F,|Fy Fy
where
p = probability of failure of subsystem 1l given that
FlIFZ subsystem 2 has failed.

For case 1 it is assumed that subsystem 1 and subsystem 2
fail independently, i.e. that

=P and P =P (4.)
2 Fy F,|F F

Combining equations 2, 3, and 4 yields

P, =P + P - P - P (5.)

for independent subsystem failures.

An example of a system failure caused by two, independent
subsystem failures might be a suspension bridge supported by 2
steel cables. If either or both of the cables fail, the bridge
will collapse. Each cable could fail independently of the
other cable.

Figure 5 shows the system probability of failure curve for
Case 1 given the individual probability of failure curves of
figure 3.
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Figure 5 - System Probability of Failure From Subsystem Probability
of Failure--Independent Subsystem Failures



CASE 2: MUTUALLY EXCLUSIVE SUBSYSTEMS

For Case 2 the events A and B are mutually exclusive, i.e.
they contain no common elements. As for Case 1 let A = the

event that subsystem #1 fails, B = the event that subsystem #2
fails, and C = the event that the system fails.

The Venn diagram for Case 2 is shown in figure 6.
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Figure 6 - Venn Diagram for Mutually Exclusive
Subsystem Failures

From figure 6 it is seen that
C=A+8B (6.)
A NB s ¢, the null set. - (74)

From equation 6 it is possible to write the probability of
failure of the system as

P, =P + P (8.)

for mutually exclusive failures.

In terms of equation 1 it can also be stated that

P =0 ; (9.)
FlﬁF2

that is, the probability that both events A and B occur is zero.
The events are mutually exclusive; the occurrence of one event
prevents the other event from happening.




An example of a system failure caused by two, mutually ex-
clusive subsystem failures might be a digital computer that .
fails if an input logic circuit sends it the input sequences
, (0,0) or (1,1). The logic circuit can cause computer failure by
£ generating either of these sequences.

The two failure events are mutually exclusive; if either
sequence occurs, the other sequence cannot occur simultaneously.

Figure 7 shows the systém probability of failure curve for
Case 2 given the individual probability of failure curves of

figure 3.
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Figure 7 - System Probability of Fail From Subsystem Probability
of Failure--Mutually Exclusive Subsystem Failures

CASE 3: TOTALLY DEPENDENT SUBSYSTEMS

It is assumed that a failure of either subsystem 1 or sub-
system 2 or both subsystems 1 and 2 will cause a system failure.
For Case 3 the event that subsystem 2 fails is a subset of the
event that subsystem fails; that is, every time that subsystem 2
fails, subsystem 1 fails also.

As for Cases 1 and 2 let A = the event that subsystem #1
fails, B = the event that subsystem #2 fails, and C = the event
that the system fails.

The Venn diagram for Case 3 is shown in figure 8.
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From figure 8 it can be seen that
C=A+B - (ANB) (11.)
, L 2
The event B is a subset of the event A; then
ANB =B ' ® - (12.)
and equation 11 becomes ’
C=24a (13.)

From equation 13 it is possible to write the probability of
failure of the system as

for subsystem 2 failure totally dependent on subsystem 1.

In terms of equation 2 it can also be stated that

p =p. | o (15.)
6.

that is, the probability that.both event A and event B occur is
the probability that event B ¢ccurs.

In terms of equation 3 it can be stated that

= 1.0 , " (16.)
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An example of a system with a failure mode exhibiting total
dependence is shown in figure 9.
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Figure 9 - System with Totally Dependent Failure Mode

For this system each time flip-flop #2 is upset, it also
upsets flip-flop #1 and initiates a "FAIL" output.

Assume it is possible to observe the probability of upset
of both flip-flops versus the noise voltage level. This allows
probability of failure curves of figure 3 to be drawn for upset
of flip~flops #1 and #2.

The analysis shows that the probability of failure for the
system is just the probability of failure of flip-flop #1.

Figure 10 shows the probability of failure curve for the
Case 3 given the individual, probability of failure curves of
figure 3.
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Figure 10 - System Probability of Failure From Subsystem Probability of
Failure--Totally Dependent Subsystem Failures

A degenerate example of Case 3 occurs when subsystem #1 al-
ways causes subsystem #2 to fail and subsystem #2 always causes
subsystem #1 to fail. Then event A = event B and Pp = Pp = Ppg.



UPPER AND LOWER BOUNDS FOR SYSTEM
PROBABILITY OF FAILURE

Suppose that the probability of failure curves of figure 3
are given, but the relationship of the subsystems in producing
system failure is not known. It is possible to assume that each
of the three cases so far studied will apply and use the results

to obtain upper and lower bounds on the system probability of
failure. '

It will be assumed first that the probability of failure
curves of figure 3 are known. Suppose that a particular noise
voltage level is chosen and the probabilities of failure of the
subsystems at the noise level are known, i.e. PFl and PFZ’

1. Assume independent events. Then from equation 5

P.=P, +P, -P_ .P (5.)

Both Ppy and Pp, are in the interval zero to one. Then the re-
sult ofequation 5 will also be in the interval zero to one.

2. Assume mutually exclusive events. Then from equation 8
P,=P, +P_, S (8.)
If this yields a Pr greater than one, then the events cannot be

mutually exclusive. This case is not valid for the events ob-
served.

3. Assume totally dependent events. From equation 14

PF = max{PFl, PFz} ‘ (14.)

That is, choose the larger of the probabilities. This is
the same as assuming that one subsystem fails each time the
other subsystem fails, or event A is a subset of event B or
vice~-versa.

Equations 8 and 14 can be then used to place upper and
lower bounds on the system probability of failure.

From equations 5 and 8 it can be seen that

PF,independent.‘i PF, mutually exclusive (17.)
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and

This can be proven as follows:
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From equations 8 and 14

PF,totally dependent A

it can be seen that

PF,mutually exclusive

This can be proven as follows:

max{P_ , P
Fi' Fy

(18.)

This is true because both PFy and PF, are between 0 and 1.

From equations 5 and 14

PF,totally dependent <

it can be seen that

PF,independent

This can be proved as follows:

max{PFl, F

?
P, <P_. +P_  -p_ .

11
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P (1 -p_)
F, Fy

Both Pp,

and (1 - Pp;) are non-negative and the inequality
holds.

Using ‘equations 17, 18, and 19 yields

PF,totally 2 PF.independent hd mln{PF,mutually r 1.0} (20.)
dependent exclusive

Equation 20 can be used to obtain upper and lower bounds on
the system probability of failure when the subsystem probabili-
ties of failure are known,

but the dependence of subsystem fail-
ures in producing a system failure is not known.

For example suppose that Pp; = 0.6, PFry

- 0. 4. Then

PF,mutually exclusive 1.00

PF,independent = 0.76

PF,totally dependent 0.60 .

N - INTERACTING SUBSYSTEMS

This analysis can be extended to the case of any number, N,
of interacting subsystems to provide upper and lower bounds on
the probability of failuge curves.

The resulting formulas are

UPPER BOUND (MUTUALLY EXCLUSIVE FAILURES)

p
P_. = min{P + P + ¢+ + P, 1.0} (21.)
F Fl F2 . FN
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LOWER BOUND (TOTALLY DEPENDENT FAILURES)

Pp = max{PF Yo (1 =1, 2, **+, N)

I

"NOMINAL" CASE (INDEPENDENT FAILURES) *

)+ (1.0 =P ) +e0 (1.0 - P_ )
Fy F, F

N

Equations 21 and 22 can be used to calculate upper and

(22.)

(23.)

lower bounds on the system failure threshold curves when the in-

Equation 23 can be
independently. 1In
the precise fail-

ure mechanisms are not known; for this case equations 21, 22,
and 23 can be used as upper bounds, lower bounds, and nominal

values of the system failure thresholds.

*Equation 23 is derived in Appendix I of this note.
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APPENDIX I: AN INTERESTING RELATION (:) |
FOR INDEPENDENT SUBSYSTEMS '

An interesting relation exists for the probabilities of
survival for the independent case. (Case 1.)

Let
P =100-P
S1 F1
(A.1)
P = 1.0 - P
S2 Fa
where
PS = probability of survival of the system when subsystem’
1l 1 when it is driven.
and
Py = probability of survival of the system when subsystem
2 2 when it is driven.
Also (:)
PS,IND =1 - PF,IND (A.2)
where
PF IND = probability of failure of the system for inde-
’ pendent failures,
and

Ps IND = probability of survival of the system for inde-
! pendent failures. _

Then
Ps,inp = 1+0 - Pp 1xp
= 1.0 = (Ppyy+ Ppy = Ppy * Ppy)
Pg,inp = 1+0 = Ppy = Pp, + Py - P (A.3)
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This may be factored to yield

PS,IND = (1.0 - PFl)(l.O - PFZ) _ (A.4)
or

Ps, 190 = Pgy,1mp - Ps2,1np (A.5)

From equation A.5 the pProbability of Survival of a system
composed of 2 independent subsystems is Just the product of the

Sense since the event that the entire System survives ig the
event that both subsystems survive, i.e, subsystem 1 survives
and subsystem 2 survives.
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