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Abstract

Two problems are considered in this report: the determination of confidence
limits for system reliability based on component results with and without the inclusion of
system results, and the determination of confidence limits for component reliability based
on component and system results. The method of maximum likelihood is used to obtain
estimates of the first two moments of the maximum likelihood estimate of reliability.
These estimates are then equated to the estimates of the moments under binomial
sampling theory to obtain pseudo-sample size and number of successes from which
confidence limits are computed. Some examples are given.
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THE ASSESSMENT OF SYSTEM AND COMPONENT
RELIABILITIES BASED ON BOTH SYSTEM
AND COMPONENT TEST RESULTS

Introduction

Consider a system which is comprised of m components, each of which, when
subjected to some test, has probability of success (reliability) P and suppose that
the system reliability under some test, is given by a function of the pi's, say
h(pl, Pgs eees pm), which we abbreviate by h(p). Suppose further that results are
available from n, tests on the ith component and (possibly) n tests on the system.

The problems considered in this report are:

1. The determination of a 100Y-percent confidence interval on
h(p) based only on component tests,

2, The determination of a 100Y -percent confidence interval on
h(p) based on component and system tests,

3. The determination of a 100Y-percent confidence interval on
p; based on component and system tests.

The first problem is the one most often encountered in practice and which has
attracted the most interest (see references [1], [2], and [4]-[8]). The determination
of exact confidence limits for all but the simplest of systems is prohibitively complex,
so the need is apparent for approximate confidence limits. Myhre and Saunders [6]
have compared two approaches to obtaining approximate limits, and a third (first pro-
posed by the author in [2]) is given in this report. Comparisons of the three approach-
es in [2] are repeated here. This third method leads directly to a solution to the sec-
ond problem. The third problem has been considered from the standpoint of point
estimation by Easterling and Prairie [3] for the special case of identical components,
either in series or parallel, and the approach presented there is re-examined here
from the standpoint of interval estimation. Some additional fesults pertaining to non-

identical components are also given.

AN
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The implications of the assumption that the system reliability is h(p) should
be emphasized, This requires that the reliability of a component be the same under
the component test conditions as under the system test conditions and that the system
reliability be capable of being expressed as a function of the component reliabilities.
Inherent in this is the assqmption of no interaction between components, that is, the
success or failure of one component in a system test does not affect the performance
of the other components. If the failure of one component increases the streés on a-
nother and degrades its reliability, then the assumption that the pi's are the same in
both tests is not met. Even if the condition of no interaction can be justified, the as-
sumption of the model further requires that care should be given in designing compon-
ent and system tests so that they are compatible. For example, the results of com-
ponent tests at extreme conditions would not be applicable to the assessment of sys-
tem reliability under moderate conditions, and.so if the goal of the testing program
is the latter, the components would have properly been used in a test at moderate
conditions, However, even in cases where the assumption is not strictly met, system
reliability is often estimated through a function such as h (p). An accompanying con-
fidence limit statement is valuable in that it reflegts the statistical precision in that

estimate.

Confidence Intervals for System Reliability

The general procedure for obtaining a 100Y-percent confidence interval for a
given parameter is to determine those values of the parameter for which the proba-
bility of obtaining a value of the random variable as extreme or more so than that
observed is 1 - Y. That is, values of the parameter are determined for which the
observation is included in a range of outcomes which has probability ¥, To do this
requires an ordering of the possible outcomes. The difficulty in applyirig this to the
problem at hand is that the observation consists of a vector of component results for
which the problem of ordering quickly becomes quite complex (see Steck [8]), and the
question of the best ordering also arises. Thus, the need arises for a tractable meth-
od to obtain approximate confidence intervals for complex systems. Three have been
proposed, One due to Madansky [5], is based on the asymptotic chi-square distribu-
tion of the logarithm of the likelihood ratio statistic. Another, due to Rosenblatt (71,
is based on the asymptotic normality of a U-statistic, in this situation U being an un-
biased estimate of the system reliability which is referred to as the "simulation"
estimate. The third approximation is based on the asymptotic normality of maximum

likelihood estimators, a method referred to by Madansky [5] as "linearization." In

I
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many cases the latter two methods are equivalent; in fact Myhfe and Saunders [6]
regard them as one method in their comparison of approximate confidence limits for
system reliability; however, they are different in situations in which the system re-
liability is not a linear function of the component reliabilities, that is, in situations

where the maximum likelihood estimate is not unbiased.

In [6], the authors compare the likelihood ratio (LR) method and the maximum
likelihood (ML) method in several situations for which exact confidence limits can be
obtained, Their comparisons indicate that the former mefhod is the more accurate,
however, it does require more computation. The purpose of this paper is to propose
a modification of the maximum likelihood (MML) method which will improve the ap- |
proximation without complicating the computation required. (The same modification

can be made on the U-approximation, but because of the similarity, we will not con-

sider this in detail.,)

The Maximum Likelihood Method
and a Modification

Let h(p) be the system reliability function, where p = (pl, Pgs «ees pm) is the
vector of component reliabilities. If we have n, tests on the ith component with x,
successes, then the maximum likelihood estimate of the system reliability is h(i)),

where i)’i = xi/ n., and, by the theory of maximum likelihood estimation, h('i&) has an

asymptbtic variance of

m

2 p(l-p,
o2 - Z [Blh(p)] Pt -py) | n
op; n

i=1

Furthermore, h(p) is asymptotically normally distributed, so that approximate con-
fidence limits on h(p) can be obtained by replacing the 1 in Equation (1) by i)i and
treating (h(’i)) -_h(p)) /fr as though it had a standard normal distribution,

An undesirable property of this method is that it can lead to confidence limits
which fall outside the unit interval, a result due, of course, to the fact that the bound-

ed, possibly unsymmetric distribution of h(p) is being approximated by an unbounded,
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symmetric one. This forced symmetry is also one reason the ML approximation
fares poorly in comparison 'with the LR, Because h(p) is bounded between zero and
one and because it arises from binomial sampling, a procedure whic'h has intuitive
appeal is to treat h(i_)) as the usual binomial estimate based on n trials. The value of
n, which might be called the pseudo-sample size, is unknown, but for the purposes

of approximation, we will estimate it from

52 _ h®U - ()

n

that is by equating the estimated sampling variance of h(p) under maximum likelihood
theory to what it would be under binomial theory., Then the component test results
can be regarded as being equivalent to system results of n tests with x = h(p)n suc-
cesses, In most cases, n and % will not be integers. However, since our intent

here is to find a procedure which gives approximate confidence limits, this should

not cause any conceptual difficulties.

In ordinafy binomial sampling with x successes in n trials, a lower 100Y-

percent confidence limit on the reliability is given by the solution for Py, in

I(pL, X, n-x+1)=1-Y,
where

Ta+B8+1) (5

a-1 B-1 .-
T t (1 -t)7 "at,

I(s, o, B) =

the incomplete beta function, By analogy then, an approximate lower 100Y-percent
confidence limit on h(p) would be given by the solution for hL in

Ith,, X, A -%+1)=1-7.
L

Similarly, an approximate upper confidence limit would be given by the solution for

h’U in



1-I(hU,3<+1,?1-'5;)=1-Y.

This approximation has the advantage that it takes into account the asymmetry
and boundedness of h(ﬁ) and, moreover, it is exact when the system is reduced to one
component, It also is intuitively appealing since it treats a binomial-like random
variable as one, Co_mputationa.ll’y, it requires tables or a computer program of the
incomplete beta function. The method fails in the case of all successes or failures

as do the ML and LR methods; however, other arguments can be used to handle those

extreme cases,

In order to compare this approximation with the ML and LR approximations

and also to assess its accuracy, we will consider the situations given in [6].

Comparison with Exact Intervals

Consider first a system which operates successfully if k out of m identical

components operate., Then, with the notation, q = 1 - P

Al

h(pl)

m . .
Z (m) p1 qm -i
= i/ 141

pys ks m-k+1),

Exact confidence limits, P, and Py, can be obtained for p, on the basis of n, tests
with X, successes. Then, since h(pl) is a monotonic function of Pys exact confidence

limits on h(pl) are given by h(pL) and h(pU). The asymptotic variance of h(f:)l) is

k-1 m-k]2 P19y
1

2 m!
T = E{(k)p 9 n

1
From this, we can obtain n and % and compute confidence limits as outlined above.

For example, with n, = 25; x, = 23, m = 10, and Y = 0,975, the MML approximation

1
yields the two-sided 95-percent confidence intervals in Table I. In particular, with

o~ A A2 -~ 9 lod 2
k = 10, h(p) = pio = 0,434 ando” = 100p1 a- Q)/25 = 0,0656, Then

N
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n-= h(p)(l - h(p) )/0' = 3.744, x = 1,625, and evaluating the incomplete beta leads
to the pair of entries in Table I. The corresponding exact, maximum likelihood, and
likelihood ratio limits, obtained from [6], are also given. The modified maximum

likelihood limits compare favorably with those obtained by ML and by LR.

TABLE I

Comparison of 95-Percent Confidence Intervals
for a k Out of m System

k  Exact MML ML LR

10 | (0.049, 0.787) (0.039, 0.915) (-0.070, 0.938) (O.'O76, 0.871)
9 | (0.221, 0.977) (0.218, 0,999) (0.418, 1.21) (0.2997, 0.9912)
8 | (0.495, 0,.9984) (0.570, 1.000) (0.823, 1.097) (0,595, 0.9996)
7 | (0.17511, 0,99993) (0.868, 1,000) (0.9664, 1.022) (0. 8266, 0.99994)

Consider now a serial system consisting of either two or three components with
an equal number of tests, say n, on each component. Exact confidence limits in this
situation are given in the tables by Lipow and Riley [4]. The MML approximate con-

m
fidence limits follow from h(p) = 1 P, and
i

Table II gives lower 100Y-percent confidence limits for the same cases given
in [6]. One result of note in applying the MML method is that the resulting limits
tend to be conservative. In order to alleviate this, x and n were rounded up to the
nearest integer and confidence limits were obtained using these results; that is, for
the purpose of obtaining an approximate confidence limit on system reliability we
regard the componént test results as being equivalent to [n + 1] system tests with
[# + 1] successes where [z] indicates the greatest integer less than z. The limits

obtained in this way are labeled MMLI, I for integer. In general, it appears that both

10




IT

Lower Confidence Limits for Series Systems
of Two or Three Components

TABLE II

.

Confidence Level

No. of Failures 0.90 0.95
m=2 41 Ap) Exact MML MMLI ML LR Exact MML MMLI ML LR
1 1 0.607 0.570 0.585 0.655 0.629 0.548 0.514 0.530 0.611 0.571
1 2 0. 497 0.479 0. 489 0.545 0.529 0.443 0.425 0.436 -| 0.495 0.473
n_ =10 2 2 0. 445 0. 407 0.441 0.456 0.451 0.392 0.356 0.391 0. 405 0.397
1 4 0. 344 0.312 0.318 0.347 0. 350 0.298 0.266 0.271 0.292 0.301
2 3 0.364 0.337 0.362 0.373 0.375 0.304 0.290 0.315 0.320 0.326
1 2 0.716 0.705 0.709 0.756 0.739 0.6717 0. 667 0.671 0.728 0.700
2 2 0.683 0.656 0.669 0.701 0.687 0. 643 0.617 0.631 0.670° | 0.647
n, = 20 1 3 0. 660 0.652 0. 655 0.697 0.683 0. 620 0.612 0.616 0. 665 0,643
2 3 0.622 0.608 0.619 0. 647 0.636 0. 582 0.568 0.580 0.614 0.597
3 3 0,585 0.564 0.570 0.599 0.591 0.544 0.525 0.532 0.565 0.551
m =3 4 Yo | Y3
1 1 1 0.747 0.710 0.721 0.760 0.743 0.709 0.671 0.684 0.732 0.705
0 =20 1 1 2 0.693 0.660 0.669 0.704 0.690 0.644 0.621 0.631 0.673 0.651
o 1 2 2 0.639 0.614 0.619 0.654 0.643 0.598 0.576 0.580 0.621 0.604
1 2 3 0.595 0.570 0.587. | 0.605 0.596 0.544 0.531 0.549 0.571 0.557
1 2 3 0,705 0.694 0.669 0.723 0.714 0.674 0.663 0.638 0.698 0.683
n, = 30 1 1 1 0.825 0.797 0.803 0.835 0.822 0.796 0.769 0.775 0.816 0.794
2 2 2 0.712 0.695 0.703 0.725 0.715 0.681 0.664 0.672 | 0.700 0.685
0 =50 1 2 4 0.789 0.784 0.788 0.805 | 0.798 | 0,767 0.762 0.766 0.1788 0.776
o 1 1 2 0. 861 0.850 0.852 0.874 0.865 0.841 0.830 0,833 0. 860 0.845
o =100 1 1 2 0.929 0.923 0. 923 0.936 | 0.931 0.918 0.912 0.913 0. 929 0. 920
o 2 3 | 5 0. 858 0.855 0.856 0.866 0.861 0.844 0. 841 0.842 0. 855 0.848
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the MML and MMLI methods are better than the ML and moreover the MMLI seems to
be as accurate as the LR. This latter result is particularly satisfying since the MMLI
limits are considerably the easier to obtain. The require only tables of binominal
confidence limits. For series systems, then, it appears that the approximation which
is the most convenient also gives adequately accurate results. One anomaly occurs for

nO = 30, (yl, y2, y3) =(1, 2, 3). In this case the MMLI limit is considerably less than

the MML. This is because A = 32.005, % = 25. 988, essentially 26 successes in 32 trials.

However, the MMLI approximation treats this as 26 out of 33. Thus, there are situa-
tions in which rounding up would seem to be inadvisable. These should be fairly evi-

dent, as in this case, so we will not attempt to detail a set of rounding rules.

Distributional Properties

That an approximate method gives results which are generally in good agree-
ment with those obtained by an exact method, is a desirable property. However, of
more practical interest is the question of how well the approximate method works in
situations for which the exact method.cannot be used. In particular, does the method

lead to confidence intervals which contain the system reliability with approximately

the desired frequency?

To investigate this, we first consider, by simulation, the 2 out of 3 quorum
system considered by Myhre and Saunders [6]. For this system, with nonidentical

components, h(p) = p3(1 -1 - pl)(l - pz)) +(1 - p3)p1p2 and
2 3 ) . A
o = Z]-(p]+pk-2p:|pk) p-l(l-pi)/ni, I#J,Jfk,]_:#k.
1:

For the simulation, each pi was taken to be 0,7, for which h(p) = 0.784. Sam-
ples of size n, were generated for each of the components and the MML and MMLI
lower confidence limits obtained., This was repeated 2000 times and the proportion
of times for which the lower limits were less than h(p) = 0.784 was determined. '
The results are given in Table III. The corresponding ML and LR frequencies were
determined as nearly as possible from the plots given in [6]. The MML and MMLI
limits seem to fall between the ML and LR in accuracy, similar to the results of the

previous section, with the MMLI slightly more accurate. The one exception which

I
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stands out, no =10, confidence level = 0,95, indicates that rounding to the next inte-

ger may not be advisable with samples this small.

TABLE III

Simulation Results for 2 Out of 3 Quorum System

P1 = p2 =p3 =0.7
nj = ng =ng =n,
Confidence Level
0.90 0.95
Bo MML MMLI ML LR MML | MMLI ML LR
10 0.908 0.899 0.80 /0.9'2 0. 955 0.912 0.92 | 0.95
20 0.923 0.889 0.87 0.90 0.960 0.967 0.92 0. 95.
(
In further investigation of the properties of the MML and MMILI methods, three

simple two-component systems for which the confidence levels could be determined

exactly were considered. These systems, their reliabilities and asymptotic'vari-

ances of h(p) are:

1.

Series
h(p) = p;P, »
02 = p?pz(l - pz)/n2 + ngl(l - pl)/n1 .
Parallel
h(p) =1 -(1-p,)1 - pz) ,
o® - (- p1)2p2(1 - py)/ny + (.ly - p2)2p1(1 - py)/ny .

13
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- 3, Series - Parallel

h(p) = pl(l -1 - pz)?‘) ,

2
2 2 2 3
o®=(1-a- pz)A) p, (1 - Py)/n; +4pP, (1 - p,)" /n, .

The cases considered and the corresponding confidence levels are given in
Table IV, The component reliabilities were chosen so that h(p) = 0. 8 in all cases,
The actual confidence levels were determined by enumerating those cases for which
the lower confidence limit exceeded 0.8, accumulating the probabilities of those
cases, and then taking the complement of this, For the case of no failures, the
equivalent sample size was taken to be min (nl, nz) for the first énd third systems,
and max (nl" n2) for the parallel system. For the most part the MML and MMLI
intervals are conservative, the latter being slightly less so. However, so are ordi-
nafy binomial confidence limits because of the discreteness of the random variable.
Since the MML and MMLI approximations are an adaptation of this approach, this
result then is not surprising. In fact, if 20 system tests were run for which the
system reliability is 0.8, lower 95-percent binomial confidence limits would con-
tain 0.8 with probability 0.980, and lower 90-percent confidence limits would
contain 0, 8 with probability 0, 931, The corresponding probabilities for 30 system
tests are 0. 956 for both confidence levels; with 50 system tests, both 90- and 95-
percent lower confidence limits are less than 0.8 with probability 0.952, Thus, the
distributional properties of the approximate confidence limits based on component
results compare very well with what would be obtained from system tests, and ih
some cases, notably a parallel system, the limits are actually more accurate in

terms of the actual confidence level obtained.

The results presented here arefar from conclusive. However, theydo indicate
that the approach presented here gives system confidence limits which adequately
approximate exact confidence limits and also have distributional properties similar
to those of confidence limits based on system tests. There seems to be little more
than one could ask of an approximation. The computation required is not too com-
plicated, involving only the maximum likelihood estimation of the asymptotic vari-
ance of the maximum likelihood estimate of system reliability and evaluation of the
incomplete beta funcfion. The latter can be facilitated and the approximation im-

proved by rounding the derived pseudo-successes and sample size to the next integer.
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One situation in which the method may give inaccurate results is when a
component has no failures, since in this case, the estimated variance, f)i(l - f)i)/ nj,
is zero, so the method treats this as a perfect component. As an extreme case,
suppose we have a two component serial system and suppose the first component
has been tested once with a success and the second has 99 successes out of 100 tests.
Then the method treats these results as being equivalent to 99 successes in 100
system tests, which is vaiously optimistic. One solution would be to let i = n_. = 1
and treat the results as £ = 0.99, fi = 1. However, this disregards the variability in
the second component reliability estimate. Another apprbach would be to estimate P,
in pi(l - pi)/ni by a lower 50 percent confidence limit in those cases for which ﬁi =1,
so that the estimated variance would not be zero. The asymptotic variance (1) would
still hold since all that is required is a consistent estimate of the variance of f)i.
Many other techniques could be used to avoid a zero estimate of the variance of an
estimated component reliability; however, there seems to be little basis for a choice
other than the user's preference. The essence of the approach presented héré is the
way in which h(p) and the estimated variance are used to get approximate confidence
limits, not the way in which the variance is estimated. In cases where at least one
failure and one success have been obtained on all components, or if no failures have
been observed on a component and thdat component has been tested atleast as niany
times as any other component in the system, this approach, using the maximum

likelihood vestimate of 02, would seem to give accurate confidence lirnits.

This method also conveniently admits the inclusion of system test results,
assuming that they are compatible, since it essentially amounts to approximating
the likelihood function of h(p) by the binomial likelihood function with arguments X
and © - ¥, that is, h(p)si(l - h(p))ﬁ—i. The likelihood of h(p) based on n system
tests with x successes is this same function with arguments x and n - %, so the
+% (1 _ h(p))h+.n-x—5i

joint likelihood based on component and system testis is h(p)X .
Thus, for the purpose of obtaining system confidence limits on h(p), the combined

results are equivalent to n + fi tests with x + % successes and either the MML or

MMLI methods can be used directly. The pseudo system results (%, fi) and the

15
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TABLE IV

Actual Confidence Level Attained Using MML and MMLI Methods:
Two Component Systems

Intended Confidence Level
0. 90 0. 95

System nj ng MML MMLI MML MMLI

Series
20 20 0.934 0. 934 0.988 0.988
p1 =0.9 30 20 0.951 0. 951 0.961 0. 961
p2 = 0,889 30 30 0.959 0. 959 0. 959 0. 959
50 50 0.915 0.913 0. 960 0. 960

Parallel
20 20 0.915 0. 901 0.959 0. 951
p; = 0.6 30 20 0.917 0.914 0.965 0. 949
Py = 0.5 30 30 0.917 0.918 0.962 0. 952
50 50 0.917 0.914 0.958 0. 953

Series - Parallel

20 20 0.948 0,948 0.892 0. 966
p; = 0.9 30 20 0.952 0. 952 0.984 0.971
py = 0,667 30 30 0.950 0. 950 0.975 0. 964
‘ 50 50 0.928 0. 931 0. 968 0. 960

system results (x, n) can be statistically compared by using standard statistical
techniques, such as a x2 test, for comparing binomial test results. This could
provide an indication as to whether the system reliability is consistent with the
model, h(p); that is, the assumption of compatibility can be tested before the

results are pooled. This could be quite Val_liable in identifying problems in the

- system due to considerations other than component failures.

sl 3!::5l‘|= [‘ I
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Confidence Intervals for Component Reliability

' Identical Components

Suppose now that the objective is to incorporate the results of system tests
with those of component tesfs in order to improve the assessment of component
reliability; and as a starting point, let us only consider simple systems of m iden-
tical, independent components in series or parallel. The justification for want-
ing to improve the assessment of component reliability is that some future sys-
tem may require this component, and so in order to assess the reliability of the
new system it is desirable to use as much component information as possible. A
specific example of this is the bridgewire used in a certain thermal battery. This
battery uses two bridgewires for activation, two being used strictly for the pur-
pose of redundancy. When a battery is tested, both bridgewires are pulsed, and
if the battery fires there is no way to determine whether one or both of the bridge-
wires functioned. If one bridgewire does not function, it in no way affects the per-
formance of the other as there is no change in stress on the other. Over a period
of time, data have been collected at the system level (battery tests) and at the
component level (bridgewire tests). Because this type of bridgewire has other
applications (in gas generators and explosive switches, for example) an estimate
of the bridgewire reliability was desired using both battery and individual bridge-
wire results, In another situation encountered, the component was a section of
cable and the system consisted of m sections of cable connected serially. Since a
future application required only a single section, it was desired to combine the
available data on systems and components to improve the component assessment.
A related problem is determining an equivalence relation between the number of
system tests and component tests where the component reliability is of concern.
For 'example, how many system tests must be performed to obtain an estimate of
component reliability that is as ''good" as the estimate obtained from n individual

component tests?

Consider first a system consisting of m components in series. Then the re-
liability of fhe system is pm. For convenience, we have dropped the subscript on
the component reliability, If we have n, component tests with X successes and n
system tests with x successes, then the respective maximum likelihood estimates

of p are xl/n1 and (x/n)l/m. A common procedure which suggests itself here

17
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would be to seek a linear combination of these two estimates which would be opti-
mal in some sense. However, this is not feasible in this case, since a linear
combination will not retain the maximum likelihood properties and since the mean
and variance of (x/n)l/m can at best only be approximated. A procedure which

can be usefully employed is that of maximum likelihood. The likelihood of the

combined results is

and the log likelihood, ignoring terms not involving p, is
!=(x1+mx)2np+(n1 —xl) in(l-p)+(n-x)en(1 -pm) .

Differentiating this with respect to p and equating the result to zero, yields the

following equation in p, the maximum likelihood estimate of p.

Am-2

N .m-1 N
(n1 +mn)pm+ (n1 - xl)(pm +p +... +Dp)- (x1 +mx) =0, (2)

We note that this equation has a unique root between zero and [(x1 + mx)/
(n; + mn)]l/m, since the left-hand side is negative for p = 0, positive for p = 1,
and its derivative is positive throughout this range. The upper bound is obtained
by deleting the second term which is always nonnegative, For the special case,

m = 2, we obtain

_(Xl - n1)+J(n1 - xl)2 + !Jz(n1 + 21’1)(x1 + 2x)
N 2(n1 + 2n) :

2

While the exact variance of P is unobtainable, the asymptotic variance is given by
-1/E((azz)/(ap2)), where E denotes expectation. Differentiating £ twice and tak-

ing the expectation yields

2, 2m-2
)p

(1 - pm)z .

n 2 m-2 2
- -1 1 -
o1 1 mn(l - p )(m p m_n( p

l1-p 1_pm

2
8 N
-E >

op
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After some algebraic manipulations, we obtain var (p) = p(1 - p)/N(p), where

m-1
N(p) = n, + nm[ﬁp—g;m ) | (3)

1-p

Writing the asymptotic variance in this way indicates that N(p) can be regarded
as the equivalent sample size. Thus, following the approach suggested by the pre-
vious section, we can obtain approximate confidence limits on p by considering P to be
the usual binomial estimate of p based on a sample of size ﬁl = N(p) With'ic1 = PN(p)

successes. We again refer to these as MML limits, and to those obtained by round-
ing up as MMLI limits.

If the mn components used in the system test had been tested individually,
then the total sample size for assessing component reliability would have been n;
+ mn. The term in Equation (3) by whicn mn is multiplied is less than one, so that
testing components in series has résulted in less information being obtained on p
compared to what would have been obtained if all the components had been tested

singly. This term, as a function of p, is plotted in Figure 1.
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As might be expected, it is an increasing function of p and a decreasing function of
m for fixed m and p, respectively. The higher the reliability, the more informa-

tion can be obtained by testing components in series, while the less reliable a

19
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component is, the less information can be obtained. This is because the most
component information is obtained from the system test when a success occurs,
since this means that m out of m components succeeded. (Failure of the system
indicates only that 0, 1, 2, ..., or m-1 successes may have occurred.) Since the
system reliability is an increasing function of p, it follows that the amount of

component information is also an increasing function of p.

Suppose now that the system consists of m components in parallel, If the
roles of fajlure and success are reversed, the failure probability for m components
in parallel is analogous to the reliability of m components in series; that is, (1 - p)m
in the former case, pm in the latter. Thus, the solution for D in the series case
can be obtained from Equation (2) with 1 - p, n, - Xy, and n - x substituted for fa,

X1 and x, respectively. For the case of m = 2,

2(n; +2n) +x, - %(n1 + 2n) + x1)2 - 8(x, +x)(n, + 2n)

p= 2(n1 + 2n) :

Additionally, the equivalent sample size and the fraction of the possible in-
formation obtained for the series case for a probability p of failure is the same as
for the parallel case at 1 - p, so that this fraction can be obtained from Figure 1
by replacing p by 1 - p. For highly reliable components, more component infér-
mation is obtained from series system tests than from parallel system tests., This
is because a series system failure in this case is highly likely to be the result of
only-one component failure out of m trials, while parallel systems fail only if all
m components fail, so that information from situations ini which less than m failed

is lost.

Distributional Properties

The results of a simulation in [3] indicated that the estimates given above for
the component reliability and the variance of that estimate are not badly biased,
even for quite small samples. Thus, it seems reasonable to expect the approxi-
mate confidence intervals to also be adequate. In an investigation of this, the
actual confidence levels were calculated in a similar manner as in the previous
section for two component series and parallel systems. The results are given in

Table V.
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TABLE V

Actual Confidence Levels for Component Reliability Based on
Combined System and Component Results: Two Component Systems

Desired Confidence Levels

0.90 0.95

System n, n | N(p) MML | MMLI | Comp MNL | MMLI | Comp

Series

el
]
e
©

20 10| 38.9 0.918 0.918 0.920 0.985 0.985 0.985
20 20 57.9 0.944 0.941 0.947 0.986 0.986 0.986
40 10 58.9 0.946 0.946 0,947 0.986 0.986- | 0,986
40 40 | 115.8 0.911 0.911 0.922 0.957 0.957 0.962

20 10 37.8 0.912 0.912 0.924 0.968 0.965 | 0,972
p=0.8 20 20 55,6 0.911 0.891 0.933 0.959 0.959 0.969

‘ 40 10 57.8 0.923 0.923 0,933 0.965 0. 965 0.969
40 40 |111.1 0.929 0.935 0.935 0.963 0. 957 0.961

Parallel

'©
n
(=]
L]
©

20 10 23.6 1,000 1,000 0.920 1,000 1,000 | 0,985
20 20 27.3 1,000 1,000 0. 947 1,000 1,000 [ 0.986
40 10 | 43.86 0.923 0.923 0. 947 0.987 0.987 0.986
40 40 4.5 0.946 0.946 0.922 0.990 0.990 | 0.962

20 10 26,7 0.954 0.954 0.924 0.992 0.954 0.972
0.8 20 20 33.3 0.965 0.905 0.933 0.969 0.969 | 0.969
* 40 10 | 46.7 0,947 0.942 0.933 0.979 0. 947 0.969
40 40 66,7 0.917 0,917 0.935 0.959 0.974 0. 961

o)
1}

Also given are the actual confidence levels if all n; + 2n components involved in
the two tests had been tested singly. The MML and MMLI results are comparable
to those that would have been obtained from all component tests, particularly for
series systems. This is because more component information is obtained from
series systems than for parall‘el systems for components with reliability as high
as those considered, a fact which is reflected by the values of N(p) also given in
the table, A . test of 40 components, in which 20 are tested singly and the other 20
are tested in 10 two-component serial systems, is equivalent to 38.9 component
tests, while if the systems are made up of two parallel components, the equivalent
number of component tests is only 23,.6. ‘That is, in the first case, 10 system

tests were equivalent to 18, 9 component tests, but in the second case, to only 3.6
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component tests. In situations such as the latter where little component informa-
tion is gleaned from the system test, combining the data does not seem called for,

since the possible introduction of bias is not compensated for by the slight gain in

information.

Nonidentical Components

Suppose now that the system is comprised of nonidentical components. The
maximum likelihood approach used above can be extended to more than one param-
eter as follows; Suppose that we have X, successes in n, tests of the ith component

and x successes in n system tests for which the reliability is h(p). Then the log

likelihood of the combined results is given by

m

l(pl, Pgs woes pm) = 1=Zl [xi in P, + (ni - Xi) fn (1 - pi)]

+x fn h(p) + (n - x) &n (1 - h(p)) .

The maximum likelihood estimates of the pi's are obtained by solving the system of

equations'(called the normal equations)

The asymptotic variances and covariances of the estimates are obtained by

inverting an m x m matrix in which the i, jth element is given by

45
apiapj

Approximate joint confidence regions for the pi's, or a subset of them, can be
obtained by applying multivariate normal distribution theory. Approximate confi-
dence intervals for a single p, can be obtained in a similar manner as before.

Let £ be the ith diagonal element of the variance-covariance matrix. Then the
combined results yield an estimate of pi, i)i, and an estimated Variance,in.

Equating the estimated variance to 'pi(l - fbi)/‘r“li, as before, then yields a pseudo-

il

1l



sample size and number of successes from which MML or MMLI confidence limits
can be obtained.

A.lthough the theory is a straightforward extension of that for identical com-
ponents, the implementation is quite involved and tedious for all but the simplest
systems, so it is not feasible unless a good deal of system information is avail-
able relative to the amount of .compone.n’t information. To illustrate, consider a

system of two components in series, The log likelihood is

l(pl, p2) =x, dnp, + (n1 - xl) n (1 - pl) +x, n p, + (n2 - x2) (1 - p2)

+x Inp;p, +(n-x) n(l-p;p,),
and the normal equations are

B X, +x (n1 - xl) (n - x)p2

- — \:0,
5, " 1-9, ~1-5,5,

2
b,  1-8, 1-pBp,

x2+x (nz-x ) (n-x)p}1

=0,

An explicit solution to this pair of nonlinear equations cannot be obtained. How-
ever, the solution can be determined by using a technique such as the Newton-

Raphson method for solving a system of nonlinear equations.

To get the asymptotic variances and covariance, we first obtain

2
. 8%\ "1t oPy L "Pa
; - ‘ - — ,
apf Py 1-p; P1Py
= ) s Py
- apz Py l1-p, 1-pp,

23
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Denoting these terms by { L

117 Y99 and 112, the asymptotic variance covariance
matrix of the maximum likelihood estimate of Py and p, is given by

L -t
| 22 12

2
- )
V= (148, 12)

'112 4y

g1 pl2

212 222

Then an approximate 100 y-percent confidence interval on p, can be obtained

as outlined above, that is by solving for ﬁi = '[Z)i(l - f)i)/iu, S’ci = f)iflf and proceeding

as described for the MML or MMLI methods. (

Examples

Confidence Limits for System Reliability

Consider first a two-component parallel system, for which h(p) =1 -
(1 - pl)(l - Pz)- Suppose that 100 tests have been performed on each component with

97 successes on the first, 95 on the second.

Then, the maximum likelihood estimate
of h(p) is h(P) = 1 - (0. 03)(0.05) = 0, 9985,

The asymptotic variance of h(p) is

2 g P11 - pg) o Pyl - py)
o =0-p) —(—— +0-p)) T
1 2

3

so

SO R
il
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2 = 0.000001155 ,

s . h®){ - hp)

52
= 1296,75 ,
and
% =1204,81 .,

An approximate lower 90-percent confidence limit on h(p), by the MML method is

given by the solution for hL in

I(h 1294.81, 2,94) = 0,10,

LJ
which is hL = 0,99596. The MMLI lower limit is obtained from

I(h 1295, 3) =0.10,

L’
which gives hL = 0,99590, From [1], an exact 90-percent lower confidence limit on
h(p) is 0.99588, and from [5] the LR limit is 0, 99482 and the ML is 0,99836, so the
techniques proposed here compare favorably. This example should also point out
the fallacy in regarding the component results as being equivalent to the pseudo-
system results. In no way is the assertion made that testing 100 components is
equivalent to testing 1297 systems. It is merely claimed that for the purpose of

calculating system confidence limits the component results can be treated in this

way.
Consider now what may be a more @ 4
representative system, one represented ( 1 ; @
by the diagram opposite. The reliabil- ‘ € 4
\/

ity of this system is given by

h(p) = p;py(l - (1 - p3p4)2) .

25



Suppose we have the following component test results,

i ol Xi
1 20 20
2 40 39
3 50 48
4 50 49

from which we desire to obtain a 95-percent confidence limit on h(p). The first

step is to obtain the asymptotic variance. The partial derivatives of h(p) with re-

~ spect to the p; are

op. - pz(l - (1 - p3p4)2) ,

‘:)
=
1

) pl(l - p3p4)2)

-

oo, 2p1Py(1 - P3P, )P,

oh(p)
Op 4

2p Pyl - P3P, )Py -

Thus, the asymptotic variance of h(p) is

4

.2 _Z onei)? P )
) dp, n,

i=1 '

2% 2 2
- (1 - @ - pgp,)”) [Py (1 - py)/my + PP,(1 - By)/my)

2 2 2 2 2
+4p1p5(1 - pgp,)" (yPy(L - Py)/ng + Py, - py)/my) -
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Replacing the P, 's by their maximum likelihood estimates leads to h(f) = 0.9716

a2

and ¢° = 0.0006198. The pseudo-sample size and number of successes are obtained

from fi = h(p) (1 - h(p))/§2 = 44.52 and £ = h(p)i= 43.26. The lower MML confidence
limits, obtained by evaluating the incomplete beta function with parameters 43.26 and
2,26, are 0.907 and 0. 889 for 90- and 95-percent confidence levels, respectively.

(If only a rough answer is desired, these limits could have been obtained by interpola-
tion on a confidence limit slide rule coinputer. ) Rounding n and x up gives pseudo-
system results of 1 failure in 45 trials, for which the corresponding confidence limits
are 0.916 and 0.899. This is one case where direct use of the MML or MMLI method
may be unduly optimistic since the maxinlum likelihood estimate of the variance of the
reliability of the first component, on which there are but 20 tests, is zero. Estimating
Py by its lower 50 percent confidence limit, which is 0. 965, and substituting this into

p 1 - " Py)/ny in the above equation for 02 leads to fi = 12. 432, % =12.079 for which
1 17

: the Iower MML 95 percent confldence limit is 0. 742 and for the MMLI method is 0. 794.
vThese are con51derab1y more conservat1ve than those obtained above, but more accu-

rately reflect the pre01s1on 1n the estlmate, h(p). However, this does not imply that

‘ dlrect use of the MML or MMLI methods would not have.the confidence properties
‘,ascrl’bed to them in repeated samplmg If there had been 50 tests of component 1 with

"no faﬂures, this same approach leads to i = 31 309, % = 30. 420 for which the MML

95 percent lower conf1dence 11m1t is 0. 863 and the MMLI is 0. 860, not greatly different

"from those obtalned 1gnor1ng the f1rst component

Suppose now that in addition to the above component results, 30 systems have
been tested with 28 successes, Under the assumption that the reliability of the system
is h(p), these results can be combined with those obtained above. This"?"gi(res fi = 74.52,
% = 71,26, for which the MML and MMLI confidencé limits are 0.908 and 0,613, re-
spectively, for the 90-percent confidence level and 0,895 and 0, 900 for 95 percent.

Confidence Limits for Component Reliability

Identical Components -- Consider first a series system of 2 identical compon-

ents, and suppose we have the following results:

No. of Tests No of Successes

Component 30 29
System 40 36

Then

27
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2
X, -n +J(n1 - xl) + 4(n1 + 2n)(x1 + 2x)
2(n1 + 2n)

[

0. 954 ,

N(®) =n, + @—P——ZP— =108.10 ,
1-9

and

>
n

103.10 .

Based on this, lower 90- and 95-percent MML confidence limits on the component

reliability are 0,916 and 0, 905 and the corresponding MMLI limits are 0,917 and

0.906., Note that in this case a considerable amount of component information was

obtained from the system test, since N(p) is 108.10 and the total number of com-

ponents used in the test is 110, This is because with components of this high a re- -
liability, a system failure is most probably due to the failure of one but not both of o
the components so that the system results most likely were due to 4 failures in 80

components, Based on the component tests alone, 90~ and 95-percent confidence

limits are 0,872 and 0. 844, so the inclusion of system results improved the assess-

ment considerably.

Nonidentical Components -- Consider now a series- system comprised of 2

nonidentical components, and suppose we have the following results:

No., of Tests No. of Successes
Component 1 20 19
Component 2 30 29
System 50 45

For these results, the normal equations are




[

s w8 G RN NI 0 G B LN e g

64 1 5P,
x~ - 1 - 5 = 1 - A A =0,
B, P, p,P,
5p
7 1
T4 1,

P, 1-bh, 1"plf’z

The solutlon obtamed by the Newton Raphson method, is p1 0, 9408, f)z = 0, 9628,

_"and the estlmated variance-covariance matrix is

4 0.00143976 -0,00056347\
-0.00056347 0.00095783 )

Promths, . B
RIS TR
8 = . oo14307g ~°58.68, % =p;h, =36.39,

and
3 Dalto By T e
B, = G oo0o5783 - 37-39 . X, =D,A, =36.00 .

From these, 90- and 95-percent lowef MML cénf’idvencéhlimif:s/ on p1 are 0. 859 and

0.836 and for p, are 0.886 and 0.864, The corresponding MMLI limits are 0,869
and 0, 847, 0,866 and 0.843. Note that the inclusion of the system tests increased
the information on Component 1 more than on Component 2, This is because Com-~
ponenf 1 had the lower estimated reliability and therefore was more likely to have

caused the system failures,

29




i " ; DA B o |’

30

References

Buehler, R. J., ''Confidence Limits for the Product of Two Binomial

Parameters, "' Journal of the American Statistical Association, 52, pp. 482-
493, 1957,

Easterling, R. G., ""Approximate Confidence Limits for System Reliability, "
submitted for publication, 1970,

Easterling, R G., and Prairie, R. R., "Comb1n1ng Component and System
Information, ' to appear in Technometrics ,

Lipow, M., and Riley, J., Tables of Upper Confidence Limits on Failure .
Probability of 1, 2, and 3 Component Serial Systems, Vol. 1 and 2, Space
Technology Laboratories, AD-609-100, AD-636-718, 1960,

Madansky, A., 'Approximate Confidence Limits for the Reliability of Series
and Parallel Systems, '' Technometrics, 7, pp. 495-503, 1965,

Myhre, J, M,, and Saunders, S. C,, "Comparison of Two Methods of Obtain-
ing Approximate Confidence Intervals for System Reliability, "' Technometrics,
10, pp. 37-49, 1968. -

Rosenblatt, Joan R., 'Confidence Limits for the Reliability of Complex Sys-

tems, ' Statistical Theory of Reliability, ed, by Marvin Zelen, University of
Wisconsin Press, 1963,

Steck, G. P., "Upper Confidence Limits for the Failure Probability of Com-=
plex Networks, ' SC-4133(TR), Sandia Laboratories, 1957,

.

e e e A




o

S HROPERUOASS0UrEERETIErEIADR S

ISTRIBUTION:

. Wiesen, 100

. Myre, 1210

. Peurifoy, Jr., 1220
. Olson, 1510

. Lane, 1540

. Lenander, 1600
. Moore, 1610
. Arthur, 1640
. Walker, 1641
. Butler, 1642
. Prairie, 1643 .
. Anderson, 1643

ommmmm§m>wgbo§

J. Hall, 1643
. D. Sheldon, 1643
. R. Clark, 1643

. E. Boyes, 1644
. L. Stevens, 1650

. M. Burford, 1700
Winter, 1710
Morrison, 1720
G. Clem, 1730

D. Sivinski, 1740

A. Lieber, 1750

M. McCampbell, 2310
L

P

=

. Gillespie, 2320
. Shoup, 2330

. T. Abegg, 2340

. Gardner, Actg., 1550

. Easterling, 1643 (50)

SWEEUENEgHNOounnNPERDEREEIEOOrad S

SE IS o i S S S A R AR i i) i o il it i | D

i b |

. C. Kraft, 2440

S. Church, 2450

. Roth, 2480
Paddison, 2490

. Tapp, 2610

. Rodgers, 2620

. Franzak, 2630
Hood, 2650
Heilman, 7400
Meikle, 7410

. Schultz, 7420

. Denison, 7421

. Murphy, 7422

. Christopher, 7423

. Muller, 7425

. Bruckner, 7425
Ellesfon, 7425
Deverman, 7425
Sublett, 7430

. Gregson, 8130

. Schreiber, 8139

King, 8300

. Weihe, 8320

. Kramm, 9210
Eckhart, 9220

. Patterson, 9230

. Hepplewhite, 9420
. McDonald, 3416 (3)

. Gillespie, 3411

mommprépmm?"?‘?‘jb2Ut11um,wf“?>mégf"m

. K Cox, 3428-2 (15)

31





