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Abstract

ast rising pulse generator is often used as the source of energy in
electromagnetic problems. In a typical pulse generator, various physical
ms contribute to the rise portion of the resulting waveform. The rise
ristics assoicated with these mechanisms could be different viz.,

jal, integrated Gaussian etc. In this note, a -frequency domain approach
in defining and evaluating an effective rise time for the combined wave-
uch a definition is,by no means, a unique one. The illustrative examples
ut consist of combining, a) two exponentially rising waveforms and b) an
ially rising waveform with an integrated Gaussian waveform.
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I. Introduction

he objective of this note is to investigate how certain waveforms with
known rise characteristics combine to produce the resulting waveform. For
example, if a pulse generator is characterized by two rise-time contributing
mechanisms, each of which produces an exponentially rising waveform, one
wishes to know the effective rate of rise in the resulting waveform. Approxi-
mate estimates such as linear or quadrature addition of the two individual rise
times lhave been suggested and used in the past. The present approach, however,
consists of obtaining the resulting waveform as a convolution in time domain or
éimp1 a product of the individual transforms in the frequency domain. In the
frequency domain, that is on the jw axis of the complex frequency s-plane, one
may lgok for the frequency at which the convolved spectrum is reduced from its
ideal by the conventional factor of (2‘1/2) in the signal or the familiar half-
power point. The reciprocal of this frequency then may be used as the effective
rise time of the combined waveform. It is noted that the criterion used here
for defining the effective rise time is by no means unique. Rise times are
measurable in many ways [1] viz., 10-90%, e-fold, (peak value/maximum slope),
and the present definition from aifrequency domain approach. -

n what follows, the process of convolution which is the basis for the
present approach is briefly reviewed in Section II. Using the convolution
approach, two combinations are considered in this note. Firstly, two
exponentially rising waveforms are combined in Section III. In Section IV, an
exponentially rising waveform is combined with an integrated Gaussian waveform.
The normalized results are presented in tables and plots that could be useful
in design applications. This note is concluded with a summarizing Section V,
followed by a 1ist of references.




II. Review of Convolution

A frequently encountered problem in system analysis is the determination
of the output for a specified input. One method of obtaining the output employs
the priinciple of superposition which in turn uses the technique of convolution

[2,3), The basic ideas behind convolution may be summarized in the following
four steps [27.

1) the input is represented as a continuum of impulses

2) the output for a single impulse is determined

3) the outﬁut to each of the elementary impulses representing the

input is computed

4) the total system output is obtained by superimposing the responses

to all of the elementary'impulses in the representation of the input.

The superposition required by step 4) aone is achieved by means of a
convolution integral. If x(t) and y(t) represent the input and output functions,
and h(t) is the impulse response, the above four steps can be respectively
written as the following four equations.

-]

(1) = [x(e) slt=r) ar (1)

(t) = causal output for a single impulse input §(t) - (2)

(t-7) -x(t) dt = output for each elementary impulse in the input (3)
t t

(t) = fale) h(t-n) dr = S x(t-0) na) e | (a)

Note that in (3) above x(t) dt 1is the strength of each elementary impulse in
“the input. It is easily observed via (4) that the output y(t) is simply the
convolution of x(t) and h(t), keeping in mind h(t) is the impulse response.
In passing, one might also mention that continuous-time convolution is

commutative, associative and distributive.




ccasionally, the step-function responsé g(t) is known in place of the
impulse response h(t). Recognizing the following relationship between a step
function u(t) and the impulse function &§(t)

(1) =& ut) )

One may rewrite (4) in terms of the Step function response as

t t )
(t) = /[g—f x(t-'c)] g(t) dt = ﬂ%; g(,r)] x(t-1) dt (6)

ote that the Tower limit of - in (4) and (6) may be replaced by zero if
the input is zero for negative times.

he ease and benefit of this technique however, lies in the transform
domai , defined as follows. If f(t) is some arbitrary time function, we
define the two-sided Laplace transform with an overhead symbol ~ as

(s)= f £(t) St qt (7)
and the inverse transform is given by
Q +j= ' :
) 1 ° /- st
f(t) = 73 f(s) e>" ds (8)
A

o]

where|s = Q+jw is the complex frequency. Throughout this note we adopt the
above| transform, noting that by setting s = juw, one obtains a Fourier transform
as needed for numerical purposes. The contour for inverse transformation
integral is the Bromwich contour defined by Re {s} = a, such that all singulari-
ties of f (s), in a complex variable sense lie to the left of this contour [4] .
Using the above definition, equations (4], (5) and (6) above become in the
transform domain ’

v(s) = x(s) h(s) . L(9)




§(s)

s u(s) =1 | (10)

y(s) = s x(s) g(s) - ‘ - (11)
So, in the s-domain, knowing the impulse response ﬁ(s) or the step
response g(s), the transform of the output y(s) is easily constructed by a
simple multiplication procedure. Inverse transformation of y(s) can be per-
formed to obtain the time domain output function y(t).

This completes a brief review of convolution technique which is used in

the following sections.




ITI.

Combination of Exponentially Rising Wave forms

Consider an exponentially rising waveform given by

-.é t - )
f(t) = [1-e®t]utt) = [t - M8 ue) (12)
with
o= (178 ! © )
which is shown plotted in figure 1. Its Laplace transform is readily givén by
p (1 1\ _ 1 (%
fils) =5 - m“) "3 ('Ga") (14)
| : 1
Note that if the system were ideal, the response to an ideal step function

is an

ideal step function. Using (11), it is evident that one can define a

quality factor 61(5) given by

61(3)

which
ideal
given

% (s) o : ) :
1 1 ,
) u(s) Y -9

is indicative of the deviation of the output transform %1(3) from its
value of u(s) = s™1. The magnitude of [Q;(Jju)| , plotted in figure 2, is

by
1 1

A ; . —— — , (16)
lQl ()| V{+(w/a1) Viltw ty

It is
than
that

evident that at a frequency w = ays the Fourier transform fl(jm) is less

-3
jts ideal value in magnitude by an amount of 2" % = 0.707. Also, observe

for this exponentially rising waveform of fl(t), the various rise times are
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Figure 1. an exponentially rising waveform in time domain.
1 1 llAl:nll lmﬁ_tl‘n.l I IS N S N )
: TS~ -
- l \\ o
] —— +0.707 N X
2 N
- \ o
N
-t ~ ) . \ -
_ £ (ju) M
Ql(Jw)|= :—T——)-—-l \\
- u w .
10 1 ~ . J -+
- = 1 o
] Y l+m2ti =
-2 weg= (w/ag) —
10 .! 1 L L) L] I'l' L] | 1 & v § § v L] v L4 [ ] L 2B B B
1072 107t 1 10”
Figure 2. Magnitude spectrum of fl(t) normalized to the spectrum
" of an ideal step function.
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O

t10-90 = (10-90%) rise time = 2n(9) ty = 2.2t1 (17)
tmr = Pise time associated with the maximum rate of rise
- fl(t)max =t . (18)
aflf 1 _
dat
. max
t, = exponential rise time = L ty (19)

Next, one may try to combine two exponentially rfsfng waveforms as follows.

Consider a system A which puts out fl(t) for an ideal-step-function input and,

a system B which puts out a similar fz(x) for an ideal-step-function input. If
an ideal step function is sequentia]Ty applied to systems A and B, (see figure 3),
the resulting fout(t) is the desired output, given by the time convolution of

£1(t)

and fz(t), remembering that fl(t) and fz(t) are step responses and not

impulse responses. In the frequency domain, use of (11) leads to

Fls) = s Fils) Fyls)

out
Lol ) L - B
S s+cx.1 S 5+a2 ) )
1[4 %2
S Ls+ot1 s+o¢,2
-1 9(s) (s (20)
s 1 2
Once again, we recognize that
T a B .
O,(s) = o (e
2 .
and define
Qy,(s) = Qy(s) Qy(s) . (22)
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Figure 3. Combination of two exponentially rising waveforms
fr(t) and fz(t) resulting in fout(t).
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which

%out
(:) with i

%out

is indicative of the departure of the transform of the combined waveform
ts ideal value of s'l. In terms of the magnitude of the Fourier transform,

1. 1
. — e 23)
Jw)| = [: (
As (w/a)? Vis(u/ay)? ]
e now look for the effective frequency wIa ¢ at which the combined wave-

as its Fourier transform magnitude reduced from its ideal by a factor of
eading to

‘ 2 : 2

V{+(aout/“1) ; Vi+(aout/a2) . |
becomes
o‘gut (a% +a§) - a% ag = 0 (25)
ts solution - .

of +of daf o5 '

1+ - 1 - (26)
2 2,2
(al + al)

teff 7
(27)
or
Vit

t .. s 12 (28)
eff. ~—5 3.7 2 2. P2

(t] + t5) (ty + t5)

+ -
415 t5 24t

11




Equation (28) gives the effective rise time of the combined waveform, in terms

of the

tz = linear addition = t1 + t2 | (29)
- Y &) 2
tq = quadrature addition = ty ¢t t2 (30)
tg -
teff = F 75 72 (31)
{ AT+1 - A ]
where
tg = geometric mean = Jtlt2 (32)
2 2 2
ty + t t
1 2 :
A= = = —92 = a factor (33)
172 2t :
g
Although not obvious, it has been verified by taking the proper Timits
that ] |
tofr = t, tt, iff ty=0ort 9 = 0 (34)
The results are presented .in a normalizéd format as follows. Given t1 and t2’

all times are normalized with respect to the larger of the two times, say tl’

as fol

T =
A

T
q

t
f3
3
t

Teff

lows

2 t2

l-=1+(T1-) = 1+T , T=(ty/t) (35)
t 2

! 1+A-—-)'31+T (35)

1 4

toff VT

Pul - 172 .
1 2\ 2 2 .
/(IZTT) +;-(_ﬁ_1+T)] . G

e-fold rise times (=tmr for exponentials) of the two individual waveforms.
For purposes of tabulating and plotting, we define the following

Q




O

With the above normalization, T can be varied from 0 to 1 to cover all

possibilities. Table l Tists the computed values that are plotted in figure 4.
The use of table 1 and figure 4 may be illustrated by an example.

5 ns and t, = 3 ns ) (say)

T = smaller/larger = 3 ns/5 ns = 0.6

- 1.6000

® 1.2597 from table 1 : : (38)

1.1662

denormalizing

rise
estim

=1.2597 x 5 ns

1.6000 x 5 ns-= 8.0000 ns

6.2985 ns . (39)

1.1662 x 5 ns = 5.8310 ns

[t is also interesting to note that the present method yields effective
times that fall in between linear (upper value) and quadrature (lower value)
ates for the entire range.

13




14

tl - t> t2 = t< Tq Teff Tz
1.0000 © . DDED 1.0000 1.9006 1. 3080
1.0000 0, 0200 1.0802 1.9003 1.9266
1.90p0 Q. 0400 1.00068 1.9016 1.60400
1.90p0 D. 0600 1.9618 1.00386 1.64600
1.9000 2. 08900 1.063Z2 1.0063 1.9800
1.9000 0. 1900 1.0659 1.0699 1.1000
1.9900 . 1200 1.9072 1.6141 1.1200
1. 6000 3. 1400 1.09098 1.6191 1.1400
1.0000 9. 1600 1.9127 ‘1.09247 1.1600
1.0000 0. 1800 1.9161 1.6319 1. 1806
1.0086 Q. 2000 1.9198 1.8379 1.2000
1.0000 D. 2200 1.022 1.94353 1.2200
1.0000 9.2400 1.0284 1.6833 1.2499
1.9000 Q. 2600 1.9332 1.0619 1.26060
1,006 ©.2890 1.9385 1.0709 1.2800
1.0000 0. 3I009 1:0440 1.0803 1.2806
1.009000 ©.3200 1.0500 1.0902 . 1.3200
1. 0000 . 3400 1.0562 1.1005 1.3400
1.0000 ©.I600 1.9628 1.1111 1.34690
1.0006 9.3800 1.9698 1.1221 1.38090
1. 00006 Q. 4000 1.9779 1.1334 1.4000
1.00006 3.4200 1.9846 1.14%50 - 1.4200
1.90000 9. 4400 1.8923 1.1568 1.4400
1.0000 V.4600 1.18a7 1.1690 1.4606
1.0000 9. 4800 1.10922 1.1813 1.4800
1.0000 T Q. S900 1.1180 1.1939 1.5000
1,300 9. 5200 1.1271 1.2067 1.5200
1.0000 @.5400 1.1348 1.2197 1.35460
1.9000 @, 2600 1.1461 1.2329 1.5600
1.0000 . S800 1.1560 1.2462 1.5800
1.Q006 9. HOBO 1.1662 1.2597 1.6900
1.0000 0.6200 1.1766 1.2734 1.6200
1.00090 Q. 65409 1.1873 1.2872 1.6400
1.0000 ©. 6600 1.1982 1.3811 1.6400
1.09000 ©. 6800 1.2093 1.3182 1.6800
1.09000 9, 7000 . 1.2207 1.3294 1.7000
1.0000 @. 7200 1.2322 1.3437 1.7200
1.0000 Q.7400 1.2440 1.3581 1.7400
1.8000 D, 76009 1.285¢ 1.3726 1.7666
1./0006 -9, 7806 L2682 1.387Z2 L.7809
1.6000 D. 3000 1.2886 1.4020 1.8000
1. 9300 W, 3200 1.2932 1.4168 1.8200
1.0000 @.8409 1.3060 1.4317 1.8400
1.0000 ©.Bs00 1.318% 1.4467 1.8650
1, 0000 9.8899 1.3321 1.4618 1.8800
1.0000 0.9000 1.3454 . 1.4749 1.9000
1.9000 D, P200 1.3588 1.4922 1.9206
1.06000 D. 400 1.3724 , 1.5975 1.9490
1,6000 . 9600 1.3862 1.522 1.9600 .
1. 9090 0. 78600 1.4001 1.8383 1.9800
1. 0006 1.0000 1.4142 1.553 2. 0000
Table 1.

Combining two exponentially rising waveforms using the quadrature, the
convolution and linear methods.

®
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Iv. ,omb1n1ng an Exponentially Rising waveform with an IntegraT
Gaussian Waveform

Recall that the exponentially rising waveform that we have been using,
is given by

FL(8) = (1715 u(t) = [1 - {87 ugy) (40)

and its Laplace transform by
2 1 op | '
o -4 ()

To the above waveform, we now wish to add an integrated Gaussian waveform
via the convolution procedure. Consider a normal or Gaussian distribution func-
tion with zero mean and a standard deviation of t3 as given by

8(4) 2 o 1 2 | -
i R B -8
- 3 -

The reason for choosing the above form for the Gaussian, as opposed to defining

a characteristic time t4 ZVQE'to obtain a simpler exponent in (42) will be

made clear later. If G(t) is an voltage signal, it is measurable in units of
volts/second and is shown plotted in figure 5. We desire combining the integrated
Gaussian waveform with the exponential and hence the integrated Gaussian may be
written as

]
'h—s.

o
—

-
~
Q.

—

F(t)

L 1 42 1,1 ]
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Figure 5. Normalized Gaussian waveform with zero mean and a standard
deviation of ts.
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Figure 6. Integrated Gaussian waveform.
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F(t)

is an s-shaped curve and is shown plotted in figure 6. It has values of

0, 0.5 and 1 at times -«, 0 and +» respectively.

The normalized Gaussian i.e., ty G(t), and the integrated waveform F(t) are

also tabulated in Table 2, as functions of normalized time Tn = (t/t3) ranging
from-5 to 5, using the odd symmetry property of erf(x) appearing in (43).

A couple of observations about the integrated Gaussian waveform seem to be

in order. One can estimate-the maximum slope at the origin as

-i;£2133) ;;EEZE% G(0) = 0.39894 (44)
= = t = . { .
d t/tBT_ max t/1:3 t=0 3
leading to
t . =rise time associated with the maximum slope = (0.39894)'1
= 2.50752 t, (45)
It is also seen from interpolating table 2, that the 10-90% rise time of the

integrated Gaussian waveform is

t10-90 = 2-56384 t3 (46)

Next, we may look at the effective rate of rise of the integrated Gaussian

waveform by itself, using the present frequency domain approach. The frequency
spectrum of the Gaussian and the integrated Gaussian are given by

G{s)

E(%)

exp (% 52 tg) | . | (47)

1 1 2.2 18
< exp (2 s t3) | (48)

18




: t
| te(t) F(t) t £.G(t) F(t)
t 3 t 3
o : ;
0.00 0.39894 0.50000 2.55 0.01545 0.9%4614
0.05 0.393844 0.51994 2.60 0.01358 0.925339
0.10 0.39695 0.53983 2.65 0.01191 0.925975
0.15 0.394438 0.55962 2.70 0.01042 0.926533
0.20 0.39104 0.57926 2.75 0.029094 0.937020
0.25 0.38667 0.59871
2.80 0.0%7915 . 0.9%7445
0.30 0.38139 0.61791 2.85 0.0%6873 0.9%7814
0.35 0.37524 0.63683 2.90 0.035953 0.938134
0.40 0.36827 0.65542 2.95 0.025143 0.928411
0.435 0.36053 " 0.67344 3.00 0.0%4432 0.928650
0.50 0.35207 0.69146 "
: . 3,05 0.033810 0.9%8856
0.55 0.34294 0.70884 3.10 0.023267 0.930324
0.60 0.33322 0.72573 3.15 0.0%2794 0.931836
0.65 0.32297 0.74215 3.20 0.032384 ©0.933129
0.70 0.31225 0.75804 3.25 0.032029 0,934230
0.75 0.30114 0.77337
3.30 G.0%17223 0.935166
0.80 0.289469 0.78814 3.35 0.0%1459 0.935959
0.85 0.27798 0.80234 3.40 . 0.0%1232 0.936431
0.90 0.26609 0.81594 345 0.0%1038 0,937197
0.95 0.25406 0.82894 3.50 0.0%8727 0.937674
1.00 0.24197 0.84134
3.55 0.0%7317 0.932074
1.05 0.22988 0.85314 3.60 0.03119 0.938409
1.10 0.21785 0.86433 3.65 0.035105 0.9%8689
115 0.20594 0.87493 3.70 0.034248 0.998922
. .20 0.19419 0.88493 3.75 0.033526 0.941158
1.25 0.18265 0.89435 : '
3.8¢ 0.0%2919 0.942765
1.30 0.17137 0.90320 3.85 0.032411 0.944094
1.35 0.16038 0.91149 3.90 0.0%1987 0.9%5190"
1.40 0.14973 0.91924 3.95 0.0%14633 0.946092
1.45 0.13943 0.92647 i 4.00 0.0%1338 0.946833
) 1.50 0.12952 0.93319
. 4.0 0.0%1094 0.9¢
1.55 0.12001 0.93943 4.13 : 0.0'8926 0.3‘;3‘33
1.60 0.11092 0.94520 4.15 0.047243 0.948338
1.65 0.10226 0.95053 4.20 0.045894 0.948645
170 0.09405 0.95543 4.25 0.04772 0.9'8931
175 0.08628 0.95994 . -
4 $
180 | 0.07895 0.96407 35 | 0owros 0io%193
1.8 0.07206 i 4.40 0.02494 0.9%4587
1.90 0.06362 0.97128 445 0.0'1999 0.955704
1.95 .0.05959 0.97441 4.50 0.041598 0.95%6602
2.00 0.05399 0.97725 * ‘ ‘

. 0487 97982 4.55 0.041275 0.97318
210 | 004398 008214 4% | oot014 0.9:7888
2.15 0.03955 0.98422 4.65 0.0%8047 0.9°8340
2.20 0.03547 0.98610 4.70 0.0%6370 0.9°8499
2.25 0.03174 0.98773 4,75 0.035030 0.958983
2.30 0.02833 0.98928 4.80 0.053941 0.9%2067
2.35 0.02522 0.920613 4.85 0.0%3112 0.9%3827
2.40 0.02239 0.931802 4.90 0.0%2439 0.9%5208
2.45 0.01984 0.9%2857 4.95 0.0%1907 0.9%6289

B 2.50 0.01753 0.923790 5.00 0.0%1487 0.9%7133
Note: 0.039094=0.009094

0.9°0324=0.9990324

Table 2. Normalized Gaussian (téG(t)) and integra1 of the Gaussian (F(t)) as
a function of normalized time (from [5]).
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Qy (s)
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Q3(5)

I
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quency
the ef

or

form a

ot

Gauss

s before, the above spectram after normalization by an ideal step

on spectrum are g1ven by

L -1 _ 2.2
-sfl()--lTﬁq-E-st1+st $3 Ostl]ass-*O {49)
=sE(s) = exp (-% 52t§)= [14-5 52t§+0(4‘11)] as s~ 0 (50)

n writing E(s) above, use has been made of the property that the integra-
n time domain becomes a division by the complex frequency s in the fre-
domain. Equation (48) can now be used with the (2)'% criterion to yield
fective frequency Waff after setting s = juws

1 1 2 2
7 T &P ('? Yeff ts)

t A
=i = —;2-7- = 1.20112 tq . (51) O
eff ‘

eff

ne can summarize the different rise times of the integrated Gaussian wave-
bove as follows

10-90 * 2.56384 t,
o F 2.50752 tg , (52)
i = 1.20112 tg

Zefore proceding “to combine the integrated Gaussian with an exponentially
risin

waveform, let us display the Fourier transform of the integrated
jan in comparison with the exponential waveform. The quantities plotted: ’{i)

20




G(t) u

magnit

the transform ?

igure 7 are

= 1/(./1"' wztf) = [1 - % wztf +O (fti’ﬂ as 4 0

= exp (—% w2t§) = [1 - % mztg 0 (fté‘)] as 40

et et ————
i I

he above equation explains the particular choice of Gaussian waveform
sed here, leading to the same low-frequency asymptotic behavior (in
ude) in the integrated Gaussian and the exponential waveforms.

e can now combine the integrated Gaussian with an exponential. AS before,

out(s) of the combined waveform is given by

= 3 fl(s)'F (s)

%1 1 1 2.2
~s+a1]['§ exp (7 s ts)]-

. .
% [SJ,OILJ exp (-% s2 tg) , (54)

out ()

"
wn
—
wl—

Once again, the deviation of the above from its ideal s'1 is given, after setting

s = ju , by
p . *1 1 2.2 :
0,300) = | my | &P (-7 o t3) - (55)
By imposing the present criterion in frequency domain
Q¢ (Guge)| = = : (56)
1,3 eff' ) 4
we get
o 2 2 |
1 +-—:if—f- = ’2 exp [" O)eff t3 ] ” (57)
1 .
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Figure 7. Comparing the magnitude spectra of an integrated Gaussian with
that of an ideal step function.
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2,,2
1+ 1 = 2 e (t3/%efs)

t2
L
2
teff

Two choices are possible for normalization of all times. They are ts and

ty. The transcendental equation above is numerically solved for the following
2 cases.

case 1. Normalize all times with respect to (1.201 t3)
Tnl = teff/(1'201t3)
for O 5-t1/(1‘201t3) < 1

case 2.

Normalize all times with respect to t1

Tz = terf/t

for 0 < 1.201tg5/t) <1

The above computations are listed in Tables 3 and 4 and the results are
plotted in figures 8a aﬁd 8b respectively. If 3 is smaller than 1.201t3, case
1 normalization is useful. If 3 is larger than 1.201t3, case 2 normalization
is useful. :

In both cases of normalization, linear and quadrature estimates are also
included in both the tables and figures for comparison. As before, it is

found that the present estimate via frequency domain falls in between 1linear and
quadrature estimates. ‘
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t3 El =‘t1 teff ’ teff Linear Quadraturd
t3 .Ql 1.201 t3 1.201t3 1+ Tnl /1 + TEZ
1. 606 I = 1 155) @.000 1.201 'ﬁ*l.aa@ 1,000 1.000
1. 008 6. 050 9. 042 1.202  |. 1.001 1.942 . | 1.001
1,060 2. 106 @.@83‘ 1.297 1.ea5 1.08= 1.963
1. 089 @. 150 e.1és .214 1.911 1.125 1.603
1.00¢ 0. 200 ©.167 1.224 1.619 1.167 1.014
1.000 ?. 250 0. 208 1.237 1.936 1.208 1.021
1.000 0. 309 0.250 1.252 1.943 1.250 1.631
1. 000 6. 350 0.291 - 1.27a 1.0%57 i.291 1.642
1. 6006 (S ¥Tx ©.333 1.229 1.9737 .33 1.054%
1.900° | o.450 0.375 1.311 1.091 1.375 1.068
1.060 3. 500 ®;416 1.334 1.11% 1.416 1.083
1.9600] a. 550 0. 458 1.359 1,131 1.458 1.166
1,900 9. 600 0. 506 1.385 1.153 1.5@é 1.118
1,960 9. 650 9.541 1.412 1.176 1.541 1.13
1,060 9.700 ‘@.sezv 11441 1.200 1.583 1.157
1.9000| ?.750 9. 624 1.471 1.224 1.624 1.179
1. 000 | 0. 800 . 666 1.581 1.250 1.6b64 1.202
1.000 ®.850 9,708 1.533 1.277 1.708 1.225
1,000 0. 900 B.749 1.566 1.304 1.749 1.256
1,600 D. 950 0.791 1.599 1.331 1.791 1.275
1.000 kl.ﬁﬂﬁ 6.833 1.633 1.389 1.83% 1.361
1,060 1,050 ©.874 1.668 1.389 1.874 1.328
1.000 . 1.106 9.916 1.783 1.418 1.916 1.356
1.080 1.150 0.953 1.73 1.448 1.958 1.385
1.000 1.200 B.999 1.775 i.478~ 1.999 1.414
1.000 1.201 1,900 1.776 1.479 2. 0600 1.814
Table 3. Combination of an exponential waveform of rise time ty with an integrated
Gaussian of standard deviation t3§ ’ |
Case 1 Normalization.
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¢ . Linear Quadrature
t 53 T, - 1.§01 1e:ff - —
t1 1 1 - n2 ¥ Tn2
1.000 @.@ée ) 1.000 T TT590
1.000 @. 042 0. 950 1.001 1.050 1.001
1.000 0. 083 ©. 100 1.006 1. 190 1.905
1.060 ©.125 @, 150 1.915 1.15 1.011
1,000 ©. 167 0. 206 1.026 1.200 1.020
1.00¢ ©. 208 9. 250 1.941 1.259 1.031
1.000 9. 250 9. 300 1.058 1.300 1.044
1.060 @.291 8.359 1.678 1.356 1.859
1. 000 ®.333 @. 400 1.100 1.400 1.077
1.600 @. 375 @, 450 1.124 1.450 1.997
1.aée D.416 ?. 500 1.15@ 1.590 1.118
1.200 @. 458 @.550 1.178 1.55@ 1.141
1.000 0.500 B. 60 1.207 1.600 1.166
1.000 @.541 . 650 1.238 1.650 1.193
1. 000 6.583 9. 700 1.269 1.70@ 1.221
1,000 0. 624 9.750 1.30z2 1.75@ 1.250
1,000 0. bbb ®. B0 1.336 1.800 1.281
1.900 ®.708 0. 856 1,370 1,850 1.312
1. 000 9.749 ?, 900 1.406 1. 980 1. 345
1.060 ®.791 3. 950 1.442 1.950 1.379
1000 ©.833 | 1.000 1.478 2. 60O 1.414

Ta
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ble 4. Combination of an exponential aneform of rise time tl with an
integrated Gaussian of standard deviation t3;
Case 2 Normalization.
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2.0.

0 0.2 0.4 0.6 0.8

1.8 Normalized combined
rise time

1.44 ',/,_
- 4 "/
o [
1.2
. o

0 0.2 0.4
ase 2 normalization of all times w.r.t. t,

Gaussian waveforms.
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e 8. Rise times of the combination of an exponential and an integrated
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The problem of combining waveforms with exponential and Gaussian rise
c¢teristics has been addressed in this note. For example, if one wishes

to combine two exponentially rising waveforms, linear addition or quadrature

addit
mates

convo
wavef
an am
The r
of th

expon
expon
In th
betwe
of an
been

times
incor

time
and i
denta

jon of individual rise times (é—fo]ding or maximum slope) can give esti-

of the combined waveform's rate of rise. The method used here consists of
Tving the waveforms to determine the frequency spéctrum of the combined
orm. Then the frequency at which this spectrum is reduced in magnitude by
ount of (2)'1/2 from that of ah ideal-step-function spectrum is determined. -
eciprocal of this frequency then is defined as the effective rate of rise
e combined output waveform.

Two examples have been worked out. One consists of combining two

entially rising waveforms. The second example is that of combining an-
entially rising waveform with that of an integrated Gaussian distribution.
e case of two exponentials, the present method gives results that fall in
en linear and quadrature estimates. This is also true of the combination
exponential with an integrated Gaussian. For this combination, it has
determined that the effective rise time of an integrated Gaussian is 1.201
the standard deviation of the Gaussian Waveform. This factor has been
porated into the normalization procedures while presenting the results.

It is observed that for the case of two exponentials, the resulting rise
is available in closed form, whereas for the second case of exponential
ntegrated Gaussian waveforms, one needs to numerically solve a transcen-
equation involving algebraic and exponential functions.
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