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Abstract -

Electromagnetic problems are analytic functions of the
complex frequency s except at singularities. This analytic
property allows one to apply contour integral theorems from
complex variable theory. The argument number integral can be
used to find the zeros and poles inside the contour. For cases
of no singularities inside the contour the Cauchy integral for-
mula can be used to find the zeros as well as the function val-

ues. If the function of interest requires lengthy computations

(such as a determinant) then the Cauchy integral formula pro-
vides a convenient way to construct the function values from a
numerical integration. This is basically an approximate ana-
lytical continuation procedure. Saddles of the function are
also found by such procedures. These procedures provide con-
venient ways to display the function in contour plots in the s

~plane, suitable for synthesis procedures involving root locus

techniques.
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I. Introduction

In the singularity expansion method one of the important
types of terms is the natural frequencies. These are the poles
of the response of an object such as an antenna or scatterer in
the complex frequency plane. For objects of sufficiently sim-
ple shape, the natural frequencies may be found from the roots
of some equation involving well known special functions.!’5 1In
general, for arbitrarily shaped objects (even of finite dimen-
sions) such special function techniques do not apply.

For general objects the electromagnetic response is given
from the solution of an integral equation which can be written
- in the form

<T(s);ils)> = I(s) - (1.1)

where %(s) is a normalized_response for the current to a delta
function source (in time) f(s) and where the domain of integra-
tion is over that portion of the object where the response ,
exists.’ 1In finding the natural frequencies either of the fol-
lowing equations is needed '

5

- , ‘
.’<_1k(sa) ;3a>_
| (1.2)

5

<ua:f(sa)>

The solution of these equations gives the natural frequencies,
So, Which_ are special values of the complex frequency where the
response ﬁ(r,s) has poles. Here we exclude any branch cuts
from the region of the complex frequency plane of interest. 1In
many cases of interest there are no branch cuts in the entire s
plane. :

The coupling>coefficients for first order poles are

i, (sy) = 3 | (1.3)

where
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+ possible entire function o (1.5)

where ng is typically 1. For ng > 1 at any particular s, the
formulas for the coupling coefficients are more complicated
than those above. :

For the more general object (antenna, scatterer, etc.)
shapes one can use the common moment methods!’ to convert an
integral equation to a matrix equation of the formS

(Fp,m(8)) =+ (B () = (I_¢s))
n,m=1, 2, scs, N ©(1.6)

The choice of some positive integer N determines the numbers of
components of the excitation and response vectors and of the
matrix (N x N) relating the two. The N components of the vec-
tors may represent samples of the physical three ‘component vec-
tors at various localized zones .of the object (point matching)
or may represent coefficients  of ‘more general function expan-
sions (usually orthogonal functions) of the excitation and re-
sponse functions.

. The integral equation 1.1 is then replaced forJgeheral‘ob-
jects by its numerical approximation, the matrix equation 1.6,
with solution ’ : ’ :

o -1, .z, |
Oy () = (T, L(s)) (I ¢s)) | (1.7)
prOvided
fdet(fn’m(s)) # 0 . . - - (1.8)




Provided the moment method approximation of the integral
equation is performed in a manner that retains the analytic
properties of the operator as a function of s, then equations
1.2 through 1.5 carry over respectively as ‘

T m(8g)) - vy = (0

o
() -f(fﬁ’ﬁ(éa)) = (0
'(un)a . (in(sa))
Ny (8g) = (un)a. (i‘n,m(sa))l . (\,m)a (1.9)
n(e) = & (F _(s))

. . | -n
@) = D g (e) () (5 = 8g)
a v ,

where ng is typically 1. Actually the natural frequencies,
natural modes, and coupling coefficients in equations 9.1 are
only approximations of the exact values from . the previous oper-
ator equations. A good moment method approximation scheme will
have the approximate natural frequencies, natural modes, and
coupling coefficients approach the exact ones closely for suf-
ficiently large N. Note that (0p) is an N component zero vec-
- tor and (0p,m) is an N x N zero matrix.

As is well known the solutions of the first two of equa-
tions 1.9 occur for

det(Tn'm(sa)) =0 (1.10)

which serves as an equation for the natural frequencies, sqy,
which can be determined numerically. Note that o is in general
some convenient set of indices for the roots so determined.

The determinant is an analytic function of s provided the -

matrix elements are analytic functions of s. Let us then de-
fine a function : : '
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d(e) = det(T,  (s)) ; '. (1.11

where this definition applies_for problems cast in the form of
equation 1.7. This function d(s) can also be considered as a:
function corresponding to the operator equivalent of matrix de-
terminant for equation 1.1. 1In general terms d(s) can be
called the denominator function in the sense of excitation (or
something related to excitation) "divided" by d(s). This more
general definition of d(s) applies to various closed form solu-
tions involving separable or partially separable solutions for
special coordinate systems, such as spherical coordinates where
d(s) involves spherical Hankel functions.® This brings up
other possible forms of d(s) such as the eigenvalues of the op-
erator or matrix equation. This will hopefully be included in

a future note on the relation of eigenfunction expansions and
SEM,

Having defined a d(s) for the problem atAhand the first
question to be addressed is to find the poles of the response
which are the zeros of d(s) as

d(s,) =0 L .(;.12)

If T(s) cor§esponds to a delta function excitation (in time do-
main) then I(s) is typically _an entire function of s and all
response poles are zeros of d(s). There may also be poles of
d(s) such as at s = 0 due to the form of the dyadic Green's

function, but these may be removed if desired.

Now d(s) may take much computer time to calculate if it is
a determinant or a function of a determinant. Finding the
zeros of d(s) by calculations of a(s)'and'including special
root searching procedures involving various s may may be time
consuming due to all the determinants to be calculated. This
note discusses procedures for finding the natural frequencies
while significantly reducing the number of values of d(s) which
must be calculated from its original definition, such as equa-
tion 1.11. :

Consider the complex frequency plane, s = Q + iw, as in
figure 1.1. Let C be a closed directed curve which does not
cross or touch itself. As shown in figure 1.1 this curve is a
contour with counterclockwise direction for purpose of integrals
over C in the complex s plane. This note is concerned with us-
ing the values of d(s) (or other function) analytic on C to de-
termine values and other characteristics of d(s) inside C, i.e.,
for s € A where A is the open region enclosed by C.

Now consider M points s = sy for m = 1, «++, M where all
sm are on the contour, i.e., sp € Cform=1, +++, M.




s plone
= Q+

Figure 1.1

Contour for Finding Poles and Zeros in
Compliex Frequency Plane
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Furthermore let the sy be arranged in ascending order of m for
positive direction along C (counterclockwise). For convenience
in the progressions and sums we can let ‘ : (:)

s! = s;n_m = "f‘z;x-M- R (1.133

80 that the set of points sj can be considered cyclic. Note
that among the set of points sy the choice of which corresponds
tom =1 is arbitrary. Once this choice is fixed, however, all
the remaining indices m for s;, are determined. Typically the
points sp would be roughly uniformly spaced around C.

From M calculated values of d(s) on C (i.e., d(sp)) one |
can approximately calculate the values of d(s) inside C (i.e., i
for s € A). 1In particular the zeros and poles of d(s) inside E
C can be approximately calculated. Suppose d(s) is lengthy to |
calculate from some defining relation such as a determinant.
Then using some simpler formulas discussed in this note numer-
ous values as well as zeros and poles of d(s) inside C can be
more quickly determined (at least approximately) using once _
‘calculated (and stored in memory) values of d(s) on the contour
‘ C’(i;e.i'a(sﬁ)). ‘ o -




II. Determining the Zeros and Poles Via the Argument Number

Consider a function f£f(s) which is analytic and non zero on
the contour C with only zeros and poles inside C (i.e., s € Aa).
Then we have the principle of the argument, or what might be
referred to as the argument number N5, agiisiu, 18 '

_,1f1 d
N, = - - = f(s')ds’ (2.1)
a 271 c Es") ds
where
N, =N, - Np = argument number
N, = zero number o )
= number of zeros inside C includingfmultiplicity
o | ; i ’ : : (2.2)
,NP~E pole number '
= number of poles inside C including multiplicity
s' = dummy variable for values of s on C
The zero and pole numbers can be expreséed as
N = :E:n
o o.
A J
ng . =gmultiplicity‘of jth zero in A
j v o (2.3)
N ==}E:n B
p —d Pp

A

npk = multiplicity of kth pole in A

Note that equations 2.1 through 2.3 are valid for simple
closed contour C (nowhere crossing itself) taken in the posi-
tive direction (counterclockwise). If more general closed
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contours are used then one must not use Ng and Np but express
the argument number as o ' , v

N_ = E n n ~'E n n -
| °3 3 T Bk

n, = winding number of C with respect to the

O.

(2.4)
j jth zero

n,6 = winding number of C with respect to the

Px kth pole

The winding number of C with respect to a point (zero, pole, or
otherwise) is the number of times that C goes around that point
in the positive direction.!® Note that a winding number can be
negative or zero. For simple closed positive directed C the
winding number for any s in A ‘is +1, reducing equations 2.4 to
the simpler case in equations 2.1 through 2.3; it is this sim-
pler case which is our primary concern. f

There are several forms in which to express the argument
number. Starting from equation 2.1 we have

[
N
= [
=
Q ?
o.
) [
=
)
" —
Hh
)
o
/)]

10
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- f}ﬂ'[zn(l%(s')llk) + i a‘r‘g(f(‘s'))]%}c o

= arg(f(s»'))'éc" ’, o e | (2.5)

A new symbol has been introduced for multivalued functions on C
as : S v

F(s') + = change in the function F(s') around the
c coritour C in the positive sense (2.6)

For a function such as arg(f(s)) which is not in general a
single valued function on C this change is not in general zero.
Starting at one point s* on C choose one of the values of the
function F(s*). Moving aroynd C in the positive sense while
constraining the values_of F(s) to vary continuously from F(s*)
calculate the value of F(s) at the "end" of the contour C back
at s* which we can call F(s*-). Then we have

F(s) + = F(s*-) - F(s*) | (2.7)

The result is independent of the choice of s* as long as s* € C,

and independent of whichever of the possible values of F(s¥*)
that is chosen. ' iF

In computing NannumeriCally around a contour C one should

- note that the complex argument function arg(f(s)) is multivalued

and that for computer work a principal value is_chosen (such as
ATAN2 on the CDC 6600 defined to give -7 < arg(f(s)) < m). As

illustrated in figure 2.1 one merely needs to count each jump

from +m to -7 as +1 and each jump from -m to +7 as ~1 and sum
up these jump values around C in the positive sense to obtain
Na.  Figure-2.1 shows a case of 4 jumps from +m to -7 and 1
jump from -7 to +m giving Na = 3. Such a diagram as in figure
2.1 can be helpful in keeping track of the argument around the
contour. ‘ :

As indicated in section I there are M points spy chosen on
C, roughly uniformly spaced around C. One does not have, then,
a continuous arg(f(s)) around C, but only sampled values
arg(£(sm)). Between two successive points sj and sj+] we have

»Am[arg(f(S’))]

u
]
2]

Q
Hh
-
0n

1)) T’arQ(f(sé)i | (2.8)




[4
'y iw
s plane
s =0+ iw
- - >
Principal value: ‘ : s a
-7 < arg (Fisn <
‘Limiting vaiues of arg (Fisn
ore indicated on eoch side of
each jump. '

Figws 2.1 Exomple of Coampuﬁnq» the Argument Number o
from the Principal Values of the Amumm”
‘on the Contour | o |
' 12
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If
|a larg(E(s'))]1] << 7

with an appropriate principal value definition for arg(f(S'))
then_one would normally expect that there was no Jump in

,arg(f(s )) which was some integer multiple of 27 in _going from

Sm to sm+l on the contour C, If the change in arg(¥(s')) is
large in going from sm to sm+1 then the contour C is near one
or more zercs and/or poles at this part of the contour C and a
finer gridding of the sample points sy is needed in this region
so that the change in arg(f(s)) between sample points is made
small. Note that arg(f(spy)) near +m is considered close to
argéf(sm+1)) near ¥m when principal value -1 < arg(£(s)) < mis
used.

Viewed another way if one is given M sample points sy from
the contour C there is an infinity of contours C' which pass
through these same p01nts. If a zero or pole is near C as com-
pared to the local spacing between the sp then an alternate con-
tour C' could "easily" have passed on the opposite side of that
zero or pole. The values of N3 for C and C' would then differ
by the Na associated with that particular zero or pole. Alter-
natively C' may pass through the zero or pole giving a non
integer value to Na if the integral through the zero or pole is
taken in an appropriate pr1n01pa1 value sense.

As the above discussion indicates some care must be exer-
cised in the numerical evaluation of the argument number around
C. Numerical analysxs of the errors in- such numerical contour
integrals may glve better quantitative restrictions on ‘the
spacing of the sm.

An alternative approach to establishing the numerical ac-
curacy of a determination of Na consists of numerically inte-
grating the contour integral. The previously discussed ap-
proach relied on choosing the proper branch of a multivalued
function which gave a closed form of the indefinite integral on
the contour C.

In this alternative approach one can consider the various
integral forms for N as given in equation 2. 5.‘ In particular
for present purposes let us choose

N,lfsi_@_(g:_)_)_
Ca fc  E(s")

13




L 1 Alf(s")] o
« sar sleedl (2.9)
C

where this last summation notation is a direct carryover from =
the closed contour integral notation. This type of summation -
might logically be referred to as a closed contour sum., There
are various explicit forms such a contour sum may take, depend-
ing on how A[f(s')] is defined and how £(s') is evaluated. The
choices involve both the choice of the digcrete s' (i.e. the ..
sm) and the manner in which A[£(s')] and f(s') are averaged
over adjacent values of f£(sgy). One choice has

AtE(s)] = E(s}, ) - E(st)

B(s') ~ 3(E(sf,) + E(s1)]

(2.10)

n D e e
! - m=l m+1 : m
As&+l = Sif
A‘second choice is (:)
 ALE(s")] = %[%(s$+l>‘- E(sy )]
£(s') = £(s})
N, = gk - E‘séflé - Elspy) (2.11)
m=1 (8p)
'SI:II+1 = siv
8y = sy

The first choice bases the individual'terms ;n the sum on an
average valuz between the values at sy and sp+1. The second

14
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choice bas?s the individual terms in the sum on an average cen-
tered on sp. , ,

Equations 2.10 and 2.11 have an advantage in calculating
Na in that there is no ambiguity resulting from the multivalued
nature of arg(f(s)). As M + « the value Ny calculated from
such summations will converge to the true value. For cases
that C does not intersect any zeros or poles (or any other sin-
gularities) Ny must be an integer. Thus a criterion for
whether or not M has been chosen sufficiently large and whether
or not the sy positions around the contour C have been opti~-
mally chosen is the convergence of the approximations for N to
an integer, which is of course real. Note that the approxima-
tions for Na give in general complex numbers. If this type of
check is applied with two or more different approximation sums
for Na the results of the various approximations can also be
compared to each other to see if adequate convergence has been
obtained. ‘

. The sums in equations 2.10 and 2.1l are quite simple to
calculate on a computer. For cases that f(s) requires lengthy

‘numerical computation (such as a determinant of a large matrix)

then one would like to minimize M, the number of different val-
ues of f(s) to be calculated. Note, however, that these values
of £(s), once calculated, can be stored and used in other nu-
merical contour integrals for finding the zeros of £(s) for

s € A. These other contour integrals are discussed in later
sections. : :

Having found the value of Ny for a particular contour then
one would like to locate each of the zeros and poles (and de-
termine their order) of f(s) for s € A. One procedure for do-
ing such would involve subdividing A, say into two parts with
boundary contours C; and C2 so that

+ Fal = N + N (2.12)

c 2

1
For Np areas this result becomes

N N,

A N |
aIC :E: ‘alc :E: a, :
‘ =] n n=1

where Cp is the contour around the nth area Ap (in the positive
sense) so that we have ' :

15
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a= U a | | (2.14)

with the common boundaries included in the union. There is the
general contour integral’ result S

N, . | -
f =Zf | (2.15)
c =Jc, | o

for Na or any other quantity resulting from an integrable func-
tion. This area subdivision is illustrated in figure 2.2 for
an example case of Np = 3,

By inspecting the values of Na, as subdivision of A pro-
ceeds one can more and more localize the zeros and poles by
looking at the various Nap values. Suppose that the function
of interest is a denominator function d(s) as discussed in sec-
tion I. Further assume that d(s) is known to have no poles but
perhaps zeros for s € A. Determinants for antenna and scatter-
ing problems often have no poles except possibly at 8 = 0 in
the finite complex frequency plane. Then Na can only be a pos-
itive integer or zero. Similarly upon subdivision the Nap can
only be positive integers or zero. Whenever a zero argument
number is found the corresponding area (say Ap) is discarded.
Whenever an argument number equal to 1 is found there is known
to be precisely one first order zero in the corresponding area.
If all subareas have argument numbers 0 or 1 then one can con-
sider all the zeros localized, or at least separated (for per-
haps subsequent accurate location of the zeros). If, however,
there is a second (or higher) order zero or two (or more)

- closely spaced zeros then one may have difficulty determining
the exact situation and be faced with an argument number of 2
or more as the area of concern is successively subdivided.

Thus the argument number is useful for determining how
many zeros are in A and for approximately localizing these; this
procedure applies to functions with only zeros in A. By a sim-
ple extension this same procedure applies equally well to find-
ing and approximately localizing the poles of a function with
only poles in A, For a more general function with both zeros
and poles in A finding and separating the zeros and poles can
be more difficult, particularly if a zero and a pole are lo-
cated near to each other.

Another situation where the argument number is useful is

the case that a zero or pole is found but the order of the zero
or pole is in question. Then a simple application of the

16
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Exomple for .NA' s 3

s plone
s =0 +iw
>
a

Figure 2.2 Exemple of Area Subdivision for Localizing

~ Zeros ond Poles
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argument number to a small radius contour around the zero or

pole will gquickly determine whether it is a zero or a pole an&
what its order is. o

Thus far we have considered a closed contour C in the s

Plane. Another interesting way to determine the argument num-"

ber is to map the contour C in the s plane to an equivalent
contour Cf in the f plane where f(s) determines the mapping.
As it turns out the argument number Nz of the function (s)
with respect to C in the s plane is equal to the winding number
Nw of the contour Cf with respect to the origin (f = 0) in the
f plane. Remember from the definition of winding number that
Nw is the number of positive encirclements (counterclockwise)
of the closed contour Cf around the point specified (the origin
in this case). In equation form we have

N = N

W (2.16)

al

c |'cf,7c'=--ok

This result is illustrated in figure 2.3 for the case of Ny = 3.
In this example Cf is made to correspond_to C in the s plane of
figure 2.1 in that the crossings of arg(f(s)) through +m are
preserved, including direction of crossing. Neglecting unspec-
ified details of the function magnitude then figure 2.3 can be
considered a mapping of figure 2.1. This contour mapping from
s to f plane gives additional insight into the behavior of f(s)
since the interior of C is mapped into the "interior" of Cf for
zeros only and "exterior" of Cf for poles only where the non
simple form of Cf must be included when defining "interior" and
"exterior." Note that Cf intersects (crosses) itself at least
Nw = 1 times. This type of mapping is also used for stability
criteria such as the Nyquist criterion.!?

18
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C, cl:gssas the negative

reol f axis +3 times (net) in
the positive (counterclockwise)
sense. Th-ii‘ corresponds to

N, =3 in the s plane as in
figure 2.1. Note that C,
crosses the negative real | axis
4 times in the positive direction

ond once in the negoﬁve direction,

Relfls)]

Nw = 3 with respect
to the origin (fis).= 0).

cf intersects itself

at least Nw—l timoks.

Figure 2.3 Mapping the Co‘ﬁfour C from the s Plane

to C, in the

f Plane
19




III. Use of the Argument Number on Conjugate Symmetric
Contours

Consider a special type of contour and the argument number
that goes with it. Let us call this special type of contour a
conjugate symmetric contour. This concept is useful with con-
jugate symmetric functions which are defined by

f(s) = £(8) . ‘ - (3.1)

for all s for which f(s) exists; this same definition applies
to vector functions, matrix functions, operators, etc. The
complex conjugate is denoted by a bar — over the quantity of
concern. o '

Conjugate symmetric functions are quite important in physi-
cal problems due to a property of the Laplace transform (two
sided)

LI£(t)] = £(s) E,jr f(t)e-Stdt T (3.2)
with its inverse

Lo [0 He

-1 .~ _ _ 1 - st

L [f(S)l = f(t) = 51 JZ i f(s)ek ds | (3.3)

If £(t) is a real valued time function (or vector, matrix, op-
erator, etc.) then ¥(s) is necessarily conjugate symmetric.
Then let us assume that all the functions with which we. are
dealing such as the dyadic Green's function, its matrix approx-
imation, the excitation and response functions, the general de-

nominator function d(s), etc. have this conjugate symmetry prop-

erty. There are some quantities such as combined fields, poten-
tials, etc. which do not have this property but do have a gen-
eralized form of conjugate symmetry.!®

As an obvious extension of the concept of a conjugate sym-

metric function consider a conjugate symmetric contour C as il-
lustrated in figure 3.1. With

N+ iw

s .
(3.4)

s =0 - iw

il

20

]

<




NI R 1V N 0030 6 VL O 30 AU M Ik § N W R TR T O FI S UL UL AN DO 0 S0 AT U A W 3 S et - S N Rl e B

| .Q. 2 .upw'vmnf contour
- C_ T lower hait contour - §iw
3¢C, if and cmly.f Te C ‘

$ plone
$ 20+ iw

Cyr Ay for Ims]1> 0
C., A_for Im[sl< 0
C = g uC

Figure 3.1 Conjugete Symmetric Contour and Half
21
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let C+ be the portion of C for w > 0 and C- be the portion of C
for w < 0. Then C will be called a cornijugate symmetric contour
provided , \ _

sec, if andonly if Sec , (3.5)

C+ will be called the upper half contour and C- will be called
the lower half contour. Note that C+ and C. are both defined
in the positive sense such that

(including limit points on the Q axis) is a positively directed
simple closed contour. Note that if desired one can close C4
by a contour CQ, on the 2 axis; C- can be closed by a contour
Co- on the O axis where Cq, and Cy_ are the same contour except
that they are oppositely directed. Including CQ, and Cu_ then
C+UCq, and C.UCq. are both simple, closed, positIvely directed
contours. , ;

The area A inside C can likewise be split into two areas
Ay for w > 0 and A-. for w < 0. Then we have

A=aua | | (3.7)

including that part of the Q axis which separates A4 and A-.

There is the contour integral identity

c J, Jo | -

Note that we are considering a conjugate symmetric C and a con-
jugate symmetric function, say ¥(s). First define

£(s)ds
YA

+

_ f f(s)as
c

g
"

(3.9)

&)
"

22




- + ‘ ‘4 | | | , (3.10)

where the -HEjaccounts for the reversal of the end points
("lower" and "upper" limits) in going from C. to C4+. This
gives ' o S - »

F_ = / E(s)ds = -?f E(s) @ = -f E(s)as | (3.11)
Je_ c, c, | ,

leading to

Re [F_]

~Re[F,]

Im[F_] = Im[F_]

(3.12)
F_ = -F,

T- +

Thus a conjugate symmetric contour integral of a conjugate sym-
metric function (s) has the general property

j[f(s)ds:/f(s)ds‘+/i‘(s)ds
o] , c, c_
=/f(s)ds -ff(s‘)ds
c+ - Je,

23




2iIm {jr'f(s)ds; = zixm{/f'f(s)ds}
2i}f In(Z(s)ds] =»2{/f Im[£(s)ds]
Jc c

+ ™

{Re[E(s)]dw + Im[¥(s)]an}
C,

" {Re[E(s)]dw + Im[Z(s)]4Q)} , (3.13)

Thus a conjugate symmetric contour integral of a conjugate sym-
metric function has no real part. Furthermore such a contour
integral is found from the imaginary part of a half contour in-
tegral, either upper or lower as convenient. Note that the re-
'sults of equation 3.13 rely only on conjugate symmetry (and in-
tegrability), not on analyticity.

Now apply the above results for conjugate symmetric con-

tours to the argument number formulas in section II. Define an.
upper argument number for f(s) with respect to C4+ as

_ 1 J{’ 1 a =,
N, £ == Im — =— f(s')ds"
a 2T { C+ E(s') ds ’

1 f af(s')
—— Im ——L
ZNL E'(S') :

+

i

- o arg(E(s")) | S (3.14)
c “

+

and a lower argument number as
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- c_ £(s")
- 1_./ 1m SE(s")
T Je T E(s")
1 . , L
= 53— arg(f(s ))lc T , (3.15)
+ ' '

so that for conjugate symmetric f(s') we have

(3.16)

Since Ny is an integer, then Na; can be an integer (for Nj
even) or an integer + 1/2 (for Nz odd). The same applies to
Na.. Due to the symmetry between the upper and lower contours
one can concentrate on the upper half contour, and thus Na,r
-for most considerations. B

Figure 3.2 illustrates an example of an argument number
calculation for a conjugate symmetric contour. In this example
N;.= 3, an odd number. Since a conjugate symmetric function °
f?s) is real for s real (s = @), then arg(f(s)) = 0, +7 are the
only values allowed on the real axis (approached from both
- sides for +m case). Figure 3.2 shows the case of (0 argument
for most positive @ (with w = 0) and 7 argument for the most
negative @ crossing of the real axis by C. However, the situa-
‘tion could be just as easily reversed. If Na were even in this
example then the contour crossings of the Q axis would have
argument ¢ in both instances or +m in both instances.

The even or odd value for Nz has an interesting implica-
"tion for conjugate symmetric C and f£(s8). The zeros and poles
of . £(s) must each come in conjugate symmetric pairs unless they
are located on the 2 axis. 0dd Na then necessarily implies |
that there be at least one zero or pole on the Q axis inside C.
Even Nz might possibly be associated with no zeros or poles on
the Q@ axis inside C. Then define
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?(s) assumed conjugate *synimtric i
ie. o) = W) | |
Note that arg(Tis)) = 0, £x onty
in crossing real oxis (s = Q)

s plane
s =0+ iw

+| jump

Principol vaiue:
-x < org(Tis) < »
Exomple for N, =3

Fiqure‘3.2 Example of Computing the Argument Number
- from the Principal Values of the Argument

on @ Conjugate Symmetric Contour
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N E'argument number for  axis inside C

aqQ
=N =-N
° Py
| | (3.17)
N, = number of zeros on R axis inside C including
Q multiplicity :
N = number of poles on Q axis inside C including
PQ  multiplicity
Then we have the general result
N_ even < NaQ even @ N_ integer |
(3.18)

N_odd <> N. odd < N_ integer + 1/2
a ag a

This concept of a half contour integral,is then useful for lo-
- cating zeros and poles on as well as near the 0 axis.

The use of a half contour integral, say an upper half con-
tour integral, need not explicitly involve the other half to
form a symmetric contour. An upper half contour integral need
only start on the Q axis and end at a more negative point on
the @ axis without crossing itself or entering the lower half
plane; the associated lower half plane integral _is implied.

The conjugate,s¥mmetry_of the function such as f(s) is also im-
plied provided f(s) is real on the Q axis, since only upper
half plane values are used. For computations near the Q axis
then the upper half plane integral can then potentially save
computer time by shortening the contour. '

Another insight into the argument number is provided by
closing the upper half plane contour C4 with a contour Co4y On
the Q@ axis. Then we can write ‘

1 1 a =
N, = =P — — £(8')ds’'
a, 2m fcuc EFs') 98’ '
+R,
, , (3.19)
= -2]—;[— arg(f(s'))’Pﬁg
/ lec,uce
+ Q+
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where P indicates the principal value of the contour integral
and the corresponding principal value of the_argument change
around the contour. This is required since f(s') may have one
Or more zeros or poles on the Q axis in which case Cg, would go
right through them. The principal value in this case is 7i
(instead of 2mi) times Nop - Npg in passing through all the
zexos and poles on the Q axis. The principal value for the Cqa.
integral associated with the lower half contour integral has
the same imaginary part even though the integration is in the
opposite direction. Note that the principal value is defined
so that considering the limits the contour integral value is f
correct, in this case so that the integral over C is the same
as that over C4 UCq, plus that over C-UCq..

Equation 2.9 indicates how to convert the calculation of
Na to numerical form for computer calculation, and equations
2.10 and 2.11 give some specific forms of finite sums for ap-
proximating Na. First choose the discrete s' as sj on the con-
jugate symmetric contour C. 1In order to take maximum advantage
of the conjugate symmetry let us define the sy such that they
occur in conjugate pairs, excegt'for;the one or two of these
that lie on the Q axis. Let sg lie on the most positive inter-
section of C with the Q axis and require ‘

Im[s}] > 0 form > 0
Im[s'] <O for m < 0

weT | - (3.20)
sp=st ., f(s)) = E(s!)

If M is the total number of sample points around C we have the
cases - , ‘

M even
2 points on  axis
m=-M', +++, M' (0 included) (3.21)

Sl = sl

-M' mor M=2 (M -1
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0 points for Q axis

m= -M", ¢e., M' exceptm # 0

Smr * Syr s

M odd

1 point on Q axis:

M = 2M'

m= =M', *++, M' (0 included)

s_‘.Mo # Sﬁu '

M=2M' +1

most positive intersection

1 point on Q axis: most negative intersection

m= =M', eo., M' except m # 0

Sle

=s£4| ’

M=2M" -1

(3.22)

(3.23)

(3.24)

With these choices of sample point distribution we have
approximations for N of the form in equations 2.10 and 2.11.

Choosing a few selected combinations for M even we have

2 points on @ axis: equations 2.10 form

Na =~

1

-
mi

+

1

2

™

[
M lf

(5gq1) = E(sp)

m=o0 £

L

- m=-M'+1

(spep) + E(sD)

1

g ' o
1 Z £(s)) - E(s)_

E(sl;‘)'+ £(s!

f(s;m) - f‘sﬁl’ ‘

me=

+

1)

B(s! ) - (s

L}
-m-1

)

m=o |

M'-1

:E: Im

m=0

Bop,y) + E(s)

?:‘(s;n

4p) - Elsp)

E(sr,y) + E(s))
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2 points on  axis:

M'-]1 ~
f(s'
N l

+1)

equations 2.11 form

- f(s' l)

a ari
' m=1

, -1
1

f(s'

rf(s&)

+1) = £(8p)

+ 4ri

m=-M'+1

'E(si)

1

f(sﬁ)

f(s!,) slwiey) — E(s8hi_q)

47l

f(sé

+
) ami E(sy)

-1
T 2T

£(s!)
1
+ VX va

E(sg)

0 points on @ axis:

M|

2 %(s:
N e e

1!

(3.26)

equations 2.10 form

- £(s})

a mL

o1 f(s'

n+1)

-1

f(s')

+ £(s)

- f(Sm 1)

:}E:

m=-M'+2

1
+ i

f(s ) + f(s' l)

£(8ly) - (s

i)

i % £ (s’ M') + f(s ')




1 Im[f(sl)] L Im(E(s),)]
'ﬂ'

- | - (3.27)
Re[%(sl)] “ Re[f(sM)] ‘

S0 points on ﬂ'axis: equatiOnsz.ll form

-1 = ~
1N Elepy) - Esp

’
~ 1
N, *® ani (s
m=2 (sm)
L =2 E(sy,) - E(s! )
+ :E: +1 -1
m==M'+1 f(s))
L1 f(sz) - f(s'l) \ 1; f(sl) - f(s',)
4m1 f(sl) 471 f(sll)
. E(s!ys) - f(sM, l) , 1 E(slyi_y) - £(spy.)
471 ~ 4Ti =
) f(sl’d' . f(s"'M')
M'-1 %o
£(s'..) - E(s! )
1 m+l m-1
DI ,
L. N f(sm)
f£(s!) + f(s!) f(s',) + £(s! )
1 2 1 1 M' ‘-1
+ s Im < 37 Im

‘f(si) E(Sﬁ.)

(3.28)

Of these forms for M even, equation 3.25 seems to be the sim-
plest. Which of these is most accurate is not clear without
some detailed numerical analysis. A similar set of approximate
sums can be formed for M odd, but not perhaps with any signifi-
cant improvements. All the M odd forms will have extra terms
outside the summation with slightly different forms from the
terms in the summation. Thus no M odd forms will have as sim-
ple a form as equatlon 3.25 for M even.
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Remember that the numerical summations for Ny are only ap-
proximate, but are useful in determining whether M (or M' for *
- the upper half contour) has been chosen large enough. By using
equation 3.14 to calculate Na, (and thus Naz) from the argument
values one can obtain in principle the exact value of Na,.

Note that for using the argument calculation corresponding to ¢
equation 3.14 it is convenient to choose the sy as in equation
3.21 so that the end points are included where arg(¥(s')) is
some choice of 0, +w only. - This choice conveniently implies M
even and the corresponding approximate numerical summations for
Na (or Na;) are found in equations 3.25 and 3.26. '
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IV. Conservation of Zeros and Poles

. An interesting application of the argument number concept
1s to the conservation of zeros and poles. Alternatively this
might be termed a conservation of singularities. This suggesats
an identification of ' ' S

argument number = Na = singularity number (4.1)

One might then think of the conservation of the singularity
number. This would seem reminiscent of conservation of charge
or conservation of quantum numbers in quantum mechanics.

The concept of the conservation of the singularity number
is based on continuous changes of singularity locations in the
complex frequency plane as a function of some parameter, P, in
a problem of interest. Such a parameter might be an admittance
or impedance loading (discrete or continuous) in an antenna or
scatterer. Another typical choice could be a ratio of two di-
mensions in an object of interest. Such parameters could in-
clude direction of incidence and polarization (or complementary
observation quantities by reciprocity) of some incident elec-
tromagnetic (or acoustical, etc.) wave. This parameter list
can include just about any parameter one needs to specify in
defining an electromagnetic boundary (and initial) value prob-
lem. :

For present purposes the zeros and poles of interest are
~considered as continuous functions of some parameter, P. Not
all situations meet this requirement. For example, in the con-
tinuous deformation of an object (antenna, scatterer) one can
have a topologically discontinuous deformation where one part
of a surface intersects another part of that surface (or a dif-
ferent surface). The jump from a small "gap" to "zero gap" (or
contact) can allow the presence of new natural modes (such as
for zero frequency in the near field for an antenna problem)
for which the charge is zero, for example. Thus one should
avoid discontinuities in the topology or impedance variation as
a function of P (our generalized parameter) for the present

- analysis, or at least account for such discontinuities. Note
that our parameter P is not necessarily a scalar (single com-
plex number) quantity, but could be a vector, a matrix, etc.

In earlier sections of this note a general analytic func-
tion f(s) is introduced; it has zeros and/or poles in portions
of the s plane of interest. A general denominator function
d(s) with only zeros in portions of the s plane (or entire s
plane) is also considered. Let such functions have poles and
zeros of only finite order in the region of the s plane of in-
terest, i.e., allow no essential singularities in the finite s
plane of interest (for all values of P of interest). For the
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s@ngularity expansion of the electromagnetic response of finite
size simple objects (including well behaved media) in free -
space there is known to be no such essential singularity in the
finite s plane.5s® = ‘

Considering our general function f(s) it can bé strictly

considered as a function of both s and P as f(s,P%., If for all
(s)

s in some neighborhood of a finite order zero of (or of
£-1(s)), £(s) (or £-1(s)) is a continuous function of P, then
the zero (or pole) is a continuous function of P. A common

form for a zero or pole of f(s,P) would be

£(s,P) = 0 for zeros (4.2)

g(s,P)

or

§(s,P) = f“l(s,P) =0 for poles : o (4.3)

which defines a zero or pole s as a function of P. 1In a simple
form one might have

J(s,P) = g(s) + P = ov ‘_‘ (4.4)

This is a form commonly encountered in root locus studies such
as used in circuit theory (or theory of some other types of
linear systems).!® 1In the simpler form of equation 4.4, or the
more general forms in equations 4.2 and 4.3, root locus pro-
cedures are useful for natural frequency considerations for the
singularity expansion method.

Generalizing the above concept define a simple closed pos-
itive contour C in the s plane as indicated in figure 4.1. Let
there be one or more zeros or poles of f(s) inside C and
bounded away from the contour for the variation of P over some
small range being considered. Then £(s) is a continuous func-
tion of P on the contour C and bounded away from zero on the
contour C. The argument number Ny of f(s) with respect to the
contour C can be calculated as discussed in section II. Since
the integrand and arg(f(s)) are continuous functions of P for s
on C then N is a continuous function of P. Then since Na is
an integer N must be a constant, i.e., not a function of P.
This is what is meant by conservation of argument number or
conservation of singularity number.

Figure 4.1 gives some examples of types of behavior con-
sistent with the conservation of singularity number. Consider
two first order zeros near each other in the s plane and inside
C as illustrated in figure 4.1A. As the parameter P is varied
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Singuiarity Number as o Parameter is Varied
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one may observe the two zeros coalescing and splitting to form

two zeros again. The singularity number of each zero is +1 and
of all those inside C is +2. Therefore at the coalescing point
the zero must be second order and after the splitting the zeros
are each first order again. Note that over the range of varia-
tion of P of interest no singularities are allowed to cross C.
In such a circumstance C must be redefined such that no such
cr0551ng occurs. :

An example of this coalescing of two zeros_to form a sec-
ond order zero would be a denominator function d(s) such as a °
determinant which has only zeros in the portion of the s plane
of interest. Such an example occurs in a recent note by Tesche
where he con31ders radiation from a resistively loaded radia-
ting antenna.? He observes for each of several loading func-
tions (resistive) that as the coefficient of the resistance
function is increased through positive real values a critical
point occurs on the negative Re[s] axis. At this point the
lowest order conjugate pair of natural frequencies coalesces
together on the Re[s] axis and then splits to go in opposite
directions on the Re[s] axis. The conservation of the singu-
larity number implies that such a zero at the coalescing point
be second order. If the numerator function has no zero there
then this would imply the existence of a second order pole in
the response (current, field, etc.) of such a structure. Such
an antenna or scatterer might be referred to as critically
damped.

Figure 4.1B shows a case with singularity number -2, with
two first order poles coalescing. This case is similar to the
two zero case discussed above. Just consider 1/d(s) as our
function of interest and all the propertles of zero trajector-
ies of d(s) carry over to pole trajectories.

Figure 4.1C shows a first order zero and a first order
pole coalesc1ng and spllttlng. The 81ngularity ‘number of the
zero is +1 and of the pole is -1 giving a singularity number of
zero for the process described. At the point of coalescing the
singularities can be thought of as annihilating each other in
that there are no singularities inside C.

An example of such pole-zero annihilation occurs in the
scattering of electromagnetic waves by symmetrlc objects. For
objects with a symmetry plane or symmetry axis the fields and
currents decompose according to this symmetry.* In particular
the natural modes for the current vq and the coupling vectors
Lo exhibit this symmetry. For certain angles of incidence and
polarlzatlon of the incident wave there is no similar symmetry
component in the incident wave and the coupling coefficient
(equation 1.3) must be zero. If the coupling coefficient is
zero a pole (or more commonly a pole pair with conjugate sym-
metry) is no longer present in the response. Thus as the angle
of incidence and/or polarlzatlon are continuously varied to the
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case giving a zero coupling coefficient a zero in the response
must move to the pole of interest to annihilate it and thereby
conserve singularity number. : :

Since an electromagnetic response (the numerator function)
is typically a vector valued function of position then the zero
is not necessarily at the same frequency for each vector compo-
nent, except of course at the point of coalescing (the natural
frequency). Such vector functions can be scalarized by use of
dot products or symmetric products involving integrals over the
body. This would make the response zero occur at a single fre-
quency which varies with the parameter. An example of such a
numerator zero would be the zeros of an admittance function
(corresponding to the poles of the impedance). Thus the con-
cept of singularity conservation leads, at least in certain
cases, necessarily to the existence of zeros in the electromag-
netic response (current densities, scattered fields, etc.).
This is clearly an important avenue of research in electromag-
netic theory. There is a considerable amount known about ex-
panding solutions in terms of poles. One might be able to use
the zeros as well.

Seeing that the concept of conservation of singularities

. gives some interesting insight into certain properties of the

electromagnetic response of objects one might try to generalize
the concept somewhat. First one might allow branch points in-
side C, provided there were more than one, and they were of

such a form that the associated branch cut(s) could be kept
from crossing C. Then the function f£(s) could still be analytic
and non zero on C giving an integer value for Na. Thus the
concept of singularity number could readily include certain re-
stricted types of branches.

One might go even further and define some kind of gener-
alized argument number or singularity number which allows for
branch cuts to cross C, or perhaps lets the contour integral be
over a contour C which wanders over more than one Riemann sheet
of the function f(s) which is multivalued. Such types of argu-
ment number can be defined in forms similar to those in equa-
tion 2.5. However, it is not clear to me at this writing what
the best form of a generalized singularity number would be or
what practical importance it might have. I leave this with the

reader as food for thought.
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V. Finding Zeros Inside the Contour from Function Values
on the Contour

As discussed earlier (section I) our function of interest
may be lengthy to calculate from its definition (say as a de-
termlnant) For this reason a set of M points sy was defined °
in counterclockwise order around a simple closed contour C and
the function values calculated at these M points. Section II
used these M points to find the argument number N, including
summations over these points to approximate a contour integral.

This section considers finding zeros inside C from the M
function values on C. This will give a way of finding approxi-
mate values of the zeros of the function inside C provided it
has no poles inside C (or the poles are first removed).

Let the function f(s) be analytic everywhere inside and on
C where C is a contour as illustrated in figure 1. l There is
the well known Cauchy integral theorem“'“’r15

o=ffwwm'r, « (5.1)

which gives a relation involving only the values of the function
on the contour. A slightly more compllcated expression known
as the Cauchy 1ntegra1 formula is :

¥(s) = E%I:f; éggi—L-ds' , seA (5.2)

where A is the part of the s plane inside C. This result is
readily generalized to nth order derivatives where n is a p031-
tive integer as

———dn £ e f f(s') |" »
£(8) = 5= ; ds' , s €A
as® 2™ Jc (st - )™t (5.3)

n=20,1, 2, 3, -

As was done with the argument number integral discussed in
section II (equation 2.5) this contour integral (equation 5.3)
can be approximated as a sum which we can write as
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ar = nt £(s')As! | | '
— f(8) = o (5.4)
- T o' - 5L | R

Now s' lies on the contour and assumes the values sm for m = 1,
**+, M in ascending order around the contour in the positive
(counterclockwise) sense. The various possible approximate
contour sums involve the choice of the sy and the manner in
which f(s'), (s - s')n+l, and As' are defined in terms of the

nearby values of sp and the associated function values f(sf).
One choice is

C o E(sh) = lEGsL,) + Esh)]

m+l
(5.5)
&® 7 = A Elspyy) *+ Elsp) et - s
as? (S»-"-4ﬂi:z: 1, qQn+l'"m+l m
" it 1y o :
Syl = S1

A second choice is

; _ 1 _
As' = 7[S$+l 'sé_l]

1 = g
s Sm

£(s') = E(s))

| M oz |
ar -~ . nl \tf(s!;‘) [s! - g! ]
as? t(s) = 4ni:z: [s' - s]PtL Sm+1 m-1
m.

m=1
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SM+1

1
so M

The first chOice bases the terms on averages between the values
at sm and sp+1. The second choice bases the terms on their
vaéues at spy, except for As' which uses values from both sm+1
and sp-1.

Now that we have approx1mations for the function and its
derivatives inside the contour in terms of the M function val-
ues on the contour these formulas can be used for various pur-
poses. One use for these formulas is to find approx1mate val-
ues of the zeros of f£(s) inside C. There are various ways to
find the zeros of analytic functions of a complex variable,
such as Newton's method and Muller's method.’® Equations 5.5
and 5.6 give ways to rapidly evaluate the function values and
its derivatives (for values of s inside C) which are needed in
such ‘iterative zero searching procedures. One should be care-
ful that the values of s used in the iterations do not wander
too close to C or outside of C because one expects the proce-
dure to break down in such cases.

Hav1ng found an approximate value sg for a zero of £(s)
inside C then one can replace each of the function values on
the contour by diViding by Sm = Sgs i. e., replace

E(SQ) > E(SQ)/KSQ“ sg) L B (5.7)

Then the new approximate values of the function inside C will
have a zero, sq, removed (at least approximately removed). The
modified function values on the gontour (from equation 5.7) can
then be used in equations 5.5 and/or 5.6 to generate function
values and derivatives needed in finding another zero. This
process goes on until all the zeros inside C are found. Note.
that from the argument number arpound C as discussed in section
II one knows beforehand how many zeros inside C are to be found.
Multiple order zeros will be found as two or more values of sg
found close together by the above procedure. Note that by hy-
pothesis f(s) has no poles inside C to confuse a zero count
from the argument number around C.

An alternative procedure_for finding zeros inside C is to
follow lines of constant arg(f(s)) from C inward until a zero
is reached or the path returns to C. Equations 5.5 and 5.6 can
be used to approximate arg(f(s)). All constant arg(f(s)) paths
leaving a zero of f£(s) must cross C since there are no poles
inside C by hypothesis. Thus constant arg(f(s)) lines exist
from C to every zero inside C. This fact can be used to reduce
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the search for zeros over A (the area inside C) to a search

over C in some sense. Again the value of N around C tells

when all the zeros are found. If there is a question of the
order of a particular zero found by this procedure then the

argument number can be determined on a small radius contour

around the zero in question. '

Yet another way to use equations 5.5 and 5.6 for finding
the zeros of f(s) inside C is by area subdivision of A, giving
several smaller contours as discussed in section II. In order
to use this technique to locate the aeros one needs the values
of arg(f(s)) on the smaller contours S0 as to evaluate. the ar-
gument number for each contour. Equations_5.5 and 5.6 can be
used to provide approximate values of arg(f(s)) for portions of
- the smaller contours not on C. Using this technique the pro-

~cedure of area subdivision need not require calculation of ad-
ditional values of £(s) from its original definition (which by

hypothesis requires relatively lengthy computation).

In order to understand the pole-zero pattern of a complex
function such as a determinant, a_technique which has been used
is to plot contours of constant |£(s)| in the s plane.?’® To do
so requires that one be able to calculate f(s) and equations 5.5
and 5.6 do this without resorting to the original definition of
f(s). Thus for contour plotting purposes the contour sums on C
provide a means of calculating contours of the function values
inside (but not too near) C. As will be discussed later con-
tours of constant &n(|£(s)|) and constant arg(f(s)) with uni-
form increments are both interesting. This technique of gener-
ating function values inside C from those on C could prove use-
ful for both argument and logarithmic magnitude contour plots.
In a sense this is a combination of the Cauchy integral formula
with the argument number formula into one complex variable
formula. '

In section III the concept of a conjugate symmetric con-
tour was defined as well as a conjugate symmetric distribution
of the sample points sh on C. Equations 3.21 through 3.24 give
four ways to arrange the M points sp, depending on whether M is
even or odd, preserving conjugate symmetry. Consider the forms
of the sums in equations 5.5 and 5.6 and pair terms in the sums
according to conjugate symmetric sy and thus also conjugate sym-
metric £(sp). The sums themselves are thus conjugate symmetric
with respect to s. This procedure assures that the approxima-
tion to f(s) is itself conjugate symmetric provided the original
function values used to generate the sums are themselves conju-

gate symmetric.

In the case of the argument number the conjugate symmetric
contour is easily reduced to a half contour and the correspond-
ing approximating sums are reduced by about half. However, the
Cauchy integral formula and related expressions (equation 5.3)
involve two complex variables, s' and s. This prevents the
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reduction in the number of terms in the sum unless s is real,
in which case the upper half contour can be used and the real
part taken with proper allowance for whether individual terms
are counted once or twice depending on their location relative
to the real axis. Of course only about half the ¥(sf) values
need to be calculated from the original definition of Z(s)
Since the remaining values can be found by complex conjugation.
It is then in the fact that conjugate symmetric sj and £(s})
are used that some computation benefits can be obtained.
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- VI. Saddles

An interesting type of point in the complex plane might be

called a saddle. By a saddle is meant a point in the s plane

- ‘which we denote by sz such that

£(s) is analytic at s = Sy

£
(sg) # 0 (6.1)

d ~
-d—g f(S)

i
(=]

S=Sz

There are many such points in the s plane and thus I is some
appropriate index set to label the saddles. An nth order sad-
dle is defined by

a" = ,
— f(s) =0 form =1, 2, ¢, n
a8 .
=5z
dn+l -
dsn+l £(s) #0
s=sy | (6.2)
f(sz) # 0

£(s) analytic at s = Sy

Saddles are important points in the s plane for constructing
contour plots for £(s) and for root locus_procedures if the pa-
rameter P for variation is combined with f£(s) in a simple form
such as the standard root locus equation®?

f(s) + P =0 o - (6.3)

Here P might be a real variable such as a resistance or conduc-

tance or a complex function of s such as an impedance or admit-

tance. Alternatively our root locus equation may take the more
general form
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£(s,P) = 0 L . (6.4)

as P is varied are discussed in section IV.

Additional considerations involving the variation of the roots | (:)

One of the properties of saddles is that they are insensi-
tive to some degree of the manner of defining the function fi(s).
To illustrate consider a function F(£(s)), assumed analytic at
f(s5). Note that ' SR '

& F(E(s) =-§§.§‘lfa$§-=o o  (6.5)
implies

a% E(s) =0 | . (6.6)
provided

-—4—. ~ .~ ; ‘ . ’ . .‘ )
Thus the saddle location is in general preserved under such a
transformation. Similarly considering multiple order saddles
suppose o

am . . ‘ ;

— F(f(s)) =0 for m =1, 2, ¢¢¢, n

ds

n+l _ _ (6.8)

L F(E(s)) #£0 |

ds

L F(E) # o0

at
Then asguming F is an analytic function of f at s = sy (or
f(s) = f(sr)) a Taylor series representation of F is possible
in terms of f with leading term as

F(E(s)) = F_ + o() , F A0 (6.9)
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where the leading term is a constant, consistent with the last
of equations 6.8. Expanding both F and f near sy in Taylor

series gives leading terms as

n+1

2
The
)
S

]

T g | n+2
Fo ¥ Fhyp(s-sp) + Q((S"SZ)n ) Fo # 0

(6.10)

o ' +1 , , +2
CE(s) = £+ fq+l(s-sz)q + O((s-—sz)q ) £q %0

Equations 6.8 and 6.10 require that
g ='n ' | | (6.11)

Equations 6.2 and 6.10 require the same. Thus thé sets of re-
quirements in equations 6.2 and 6.8 are equivalent.

An example of the above discussed insensitivity of the
saddles sy to transformations of the function f(s) (or effec-
tively to the definition of E(s) in some degree) can be illus-
trated by an example. If f(s) has saddles sy then 1/f(s) has
the same saddles and conversely. If f(s) is a driving point
admittance then 1/£f(s) is a driving point impedance. Hence
driving point admittances and driving point impedances have the
same saddles. ' : : -

Cohsider an nth order saddle sy. Near the saddle the
function has the form ' '

f“)=:%'*ﬂwlw'sﬂnﬂ'+oﬂé‘sﬁ¢u)
£(s;) =’f;_¢}o (6.12)
£+l 7 ° 
Construct contpurs in the‘s plane,for
HETENER

o (6.13)
_arg(%(s))f= arg(f) '
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The non zero term fpn43 (s - sp)P*tl in the expansion makes the
contour pattern from equations 6.13 near sy have 2(n + 1) mag-
nitude contours (If(s)? = |f5|) and 2(n + 1) argument contours
(arg(f(s)) = arg(fo)), all radiating from sy with the magnitude

and argument contours alternating around sy and separated from

each other by an angle 27/[4(n + 1)].

: One important use for gaddles is their role as critical
points in contour plots of f(s) in the s plane. In a contour
plotting procedure to be discussed in the next section .
gn(|f(sz)]) and arg(¥(sy)) are critical values for contour .
plots of &n(|£(s)|) and arg(f(s)) in the_s plane. 1In particu-
lar arg(f(sz)) is a special value of arg(f(s)) which gives con-
tours which divide the constant arg(Z(s)) contours emanating
from one zero from those emanating from another zero. They
similarly divide the constant argument contours associated with
one pole from those associated with another. This characteris-
tic of arg(f(s)) = arg(f(szy)) lines also divides constant argu-
ment lines according to poles. Viewed another way constant ar-
gument lines go from zeros to poles (including zeros or poles
at infinity) and each set of argument curves defined by a zero-
pole combination is separated in the s plane from other such
sets by arg(f(sy)) lines. Constant arg(f(s)) contours only in-
tersect at zeros, poles, and saddles (provided f(s) is analytic
elsewhere).

Saddles can be found by use of the argument number inte-
gral. The argument number depends on both the function and the
contour. Thus the argument number in sections II, III, and IV
which is discussed in terms of the function f(s) and the con-
tour C can be denoted by Na(f(s),C). Since a saddle is defined
from equations 6.1 and 6.2 by the requirement that f # 0 while
df/ds = 0 then saddles can be found as zeros of df/ds with the
restriction that second and higher order zeros of f are ex-
cluded. Thus if a simple closed contour Cy with positive di-
rection is defined in the s plane, and if C; encloses no zeros
of second or higher order and no poles of f(s), then we have

Y ' )
Naz = Na(—d—g f(s), C):)
-1 .2
_ 1 d =z 1y | d ' '
= mfc [aer 2] oz flehias
r ; Lo

= i%{ﬂz[a-:-.- Efs')] -ldf[a%-‘r f(s")]
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1 " d 2
‘,2n1.“”;ds' f(s')] +
e, Tl . Cz
1 fd oz,
= 5 arg[gir Es1)] 9
‘ A le,
=Nz

saddle number

= number of saddles insideycz including multiplicity

Z g, o | (6.14)
Ay

i

where

g is the open region'enciosed by C; and
(6.15)

n. = multiplicity of jth saddle in Ay

The considerations in section II concerning the argument number
integral can be applied to the saddle number considered here.
The use of conjugate symmetric contours and associated half
contours also carries over from gection III. The function f
has been replaced, however, by df/ds.

For numerical approximations to the saddle number Ny one
can first consider approximating df/ds on the contour by

- f(S' ) - £(s') .
E(s') = s’,'l —r = £} | (6.16)
: : m+1l m :

d
ds'

where thlS approxlmatlon is appropriate for some value of s'
between sm and sm+1 on the contour Cz. As beforem =1, 2,
see, M denote a sequence of M points in a positive order around
Cz. As long as
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larg(£),,) = arg(£l)| = |4 [arg(£)1] << n  (6.17)

as m progresses around the contour, then the change in arg(fp)
around the contour is 27Ny. The saddle number so calculated is
exactly an integer since the principal value of arg(fj) must
return to its starting value on going around the contour. Pro=
vided that Ap as in equation 6.17 is small for all m then the.
saddle number calculation is exact. Note that the fy are de-
fined in terms of the E(sy) so that derivatives of £(s') need
not be calculated. ‘ ’

In a manner similar to that in section II approximate nu-
merical integral formulas for N can be developed. Let us use

v ' ) o1 ) i
- s e e e ]

i E%IZ [Eg"' f(s')]-lA[a-g—.— E(s')] (6.18)
<

Approximate the terms in this formula in a symmetric sense cen-
tered about sy starting from equation 6.16 as

it - DR Ty
Lds' , ‘ sm+1 - sm‘ sm - sm__l

| (é'-s',l)f(s' ) + (-s' .

w1 ¥ Smen ) E(8y) sy, —spdE(s, )

- B BT m+1
(sl:\+1 - Sm) (Sm - sm..l)
(6.19)
4 (s =‘_];{f(sr:1+l) -f(s;‘) f(s;n) "f'('f‘,'n_l)
ds. 2 8;n+1 = S;n' ’ sm - sm--lA

} 1 (sx;‘ - sr'n-l) f‘“&m’ + (sxln+l - Zs;‘ + sl;‘_l)'f(sl;‘) ~+‘(-s;n+i +'sx'n) f(sl;‘_l)
2 G %2 ot

The approximating sum is then
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: M ‘l-k ' - ] - ’ -al al '
e 1% "t ""‘""‘mﬂ’ B(s2)) - (sp, -sn) (B(s)) ~E(s! 1))
i

£t (o1 -1 ) (R(al, ) - E(a1)) 4 (8L, = 83 (E(s1) - (s} 1))

Z (sp -8y IE(sr )+ (=sp +s) VE(s)) +(s!  -sHE(s! )
i

mel (SnSn1 )f(s' P tsp -2y +e VE(sD) +(-s)

+s! )f(s'
Spey = 8} | o - | (6.20)

I = @a!
so"[sM

Again the numerical formulas involve only the sy and the f(sp).
If these have been calculated for other purposes, such as on
the contour C, on a portion of the contour C, or derived from
the values on C by the Cauchy integral formula, then the use of
equation 6.20 can be numerically efficient.

The above formulas can be applied to conjugate symmetric
contours and the associated half contours as dlscussed in sec-
tion III. Some saving in the number of points sm and function
values f(sm) (approximately a factor of two saving) to be cal-
culated from the original definition is obtained due to the
conjugate symmetry.

An important property of saddles is that under certain re-
strictions they are conserved in a sense similar to poles and
zeros as discussed in section IV. Stated another way the sad-
dle number N3y, like the singularity number N, is conserved as
some parameter P is varied.

If one considers a generaljized saddle number as being pre-
cisely the argument number of df(s)/ds then the generalized
saddle number Ny is conserved just like the argument number N

- as discussed in section IV. However, the generalized saddle

number will include contributions from poles of f(s) and second
or hlgher order zeros of f(s). This more general form can then
be referred to as conservation of generallzed saddles.

If our attention is restrlcted to cases for which Cy in-
cludes no poles of f(s) and no second or higher order zeros of
f(s), then the saddle number applies to conservation of saddles
in the strict sense. For such cases the coalescing and split-
ting of two zeros or two poles as in figure 4.1 illustrates the
coalescing and splitting of two saddles as well. More general
cases involving several saddles of varlous orders are also pos-
sible.
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VII. Curvilinear Square Plots in the Complex Frequency Plane . =

: ) 4

One useful way to display the behavior of £(s) in the com-

Plex frequency plane is by contour plots. By contour plots I

mean lines (in general curved) along which some scalar quantity

related to f£(s) is a constant, usually a real constant. For a:

real valued function of two variables the contours might be for
constant values of the function.

Section II discusses the argument number Ny for a function
(s) based on the complex logarithm as &n(f(s)) (equation 2.5).
The argument number is closely related to zergos and poles of
£(s). One might then think that plots of &n(f(s)) could illus-
trate some interesting features of f(s).. :

It is a common practice to plot contours of constant

|£(s)| in the s plane as a method of determining the locations -

of all the zergs of ¥(s) in a particular part of the s plane.®
In such cases f(s) is taken as a denominator function d(s),

such as a determinant, which typically has no poles in the fi-

nite s plane, except possibly at s = 0.

- The considerations in this note lead one to use &n(£(s))
in the s plane to better illustrate theé pole-zero properties of
E(s). since | (PR | | -

an(E(e)) = n(|E(s)|) + i arg(¥(s)) (1.1

then let us consider contour plots of &n(|f£(s)|) and_arg(f(s))
in the s plane. Note that contours of constant n(|f(s)|) are
alsg contours of constant |£(s)|. Thus contour plots of
¢n(f(s)) (real and imaginary parts) effectively include contour
plots of |f(s)]. : ' U

Define quantities

A= '
(7.2)
2 = a positive integer
Then choose contour values as
tn(|E(s)]) = 0, A, 24, 34, oo
(7.3)

arg(§(8))'= 0, *A, 22A, £3A, e
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where the string of contour values is truncated for convenience
on both ends of the string of choices. In the case of the ar-

gument contours the truncation is given by the principal value

as : e

-1 < arg(E(s)) < m | (7.4)

Note that the contour choices in equations 7.3 are for equally
spaced function values for real and imaginary parts. This re-
sults in a curvilinear square plot so that the two sets of con-
tour plots (superimposed) are closely interrelated. Except at
zeros, poles, and saddles the two sets_of contours intersect at
right angles. At zeros and poles arg(f(s)) is undefined; at
saddles four or_ more constant arg(f(sy)) contours and four or

‘more constant |£(sg)| contours intersect as discussed in section
VI. '

Note that a first order zero or pole has exactly % con-
stant argument lines leading from it, a second order zero or
pole has 24 constant argument lines. Thus this tyge of plot
directly exhibits the order of zeros and poles of f(s).

In addition to the contour values specified in equations
7.3 there are special contour values which can be included in
the plot, perhaps as specially marked contours (such as dotted,
dashed, etc.). These special contour values are specified by
the saddles as discussed in section VI. For contour lines
passing through a saddle sy choose ' : :

en(|E(s)|) = zng|§(sz)|)
' (7.5)
arg(£(s)) = arg(£(sy))

Note that not all values of s satisfying equations 7.5 are
chosen for contour plots. Only those lying on contours passing
through that particular saddle are used.

- These special contours, which might be called saddle con-
tours, have special properties. In particular the constant ar-
gument saddle contours divide up the s plane in a convenient
manner. The constant argument contours (except for the saddle
contours) pass from zeros to poles (including the point at in-
finity). Such constant argument contours do not cross saddle
argument contours. Thus the saddle argument contours divide up

the complex s plane into regions each of which contains constant

argument contours associated with only one zero, or with only
one pole. The saddle argument contours come in at least two
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types: those which go from saddles to zeros and those which go
from saddles to poles (the point at infinity being included for
zeros and poles as necessary). The saddle argument contours
from saddles to poles divide up the s plane into regions with
the constant argument contours associated with a particular
zero. The saddle argument contours from saddles to zeros di-
vide up the s plane into regions with the constant argument

contours associated with a particular pole.

Another advantage of using #n(f(s)) for plots is that f£(s)
often behaves as an exponential function of s. Taking the log-
arithm of such a function then makes it grow much less radically
(in an upper bound sense) as |s| » » in the left half plane.
Note that matrices derived from electromagnetic integral equa-
tions have elements which get large in the left half plane with
forms like e™SX with x > 0. Thus the use of %n(£(s)) has an
advantage of being better bounded in the left half of the s
Plane. Except near zeros and poles &n(f(s)) is more slowly
varying. - '

The use of &n(f(s)) for contour plots in the s plane por-
tends well for future SEM investigations. Already the use of
constant arg(f(s)) contours gives further insight into the be-
havior of the impedance loaded loop (TORUS) in a forthcoming
note by R. F. Blackburn and of a resistive damping structure
for an SGEMP simulator in a forthcoming note by T. L. Brown.

Finally the use of such curvilinear plots of &n(f(s)) .
would seem useful for synthesis problems for antennas (EMP sim-
ulators) and scatterers. If the denominator function in the
response is of the form f(s) + P where P is simply related to a
loading impedance then P can be chosen within certain restric-
tions to shift the zeros of the denominator to more desirable
positions in the s plane. Note that f(s) need not be a deter-
minant; it can also be an eigenvalue, as will hopefully be dis-
cussed in a future note. : '
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VIII. Changing the Denominator Function Without Changing the
- Pole-Zero Pattern E

Another~technique for use in plotting a function in the s
Plane is to divide by another function which might be thought
of as a scaling function. Then define

f(s) = d(s)

ds(S)

(8.1)

where f£(s) is the new function, dg(s) is our 5calihg function,
and d(s) might be a determinant of interest.

If as(s) is required to be an entire;function with no
zeros it can have the general form!!rl$

‘,&s(s) = eg(s) ' : I : : (8.2)

where g(s) is an entire function. As an example suppose that
d(s) is the determinant of an N x N matrix where the matrix
elements are related to the freg space_ dyadic Green's function
evaluated between two zones at In and rm on the body. The in-
dividual matrix elements will then have exponential terms which
can be approximated as ' B v

Since a determinant can be expanded as a sum of products then

one might look for the maximum T of the form

By o | - |
T = zzglrn(j) - rm(j)l | | : (8.3)
j=1 |

found in the determinant. Call this Tmax. Then one choice is

g(8) = - SThax
' (8.4)
s
-Sp
i (s) = e C max
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By this procedure one should be able to remove the leading ex-
ponential term in the determinant, but if there is cancellation

- of this leading term in the determinant this procedure may not

be useful in the above form. Other choices of §(s) are possi- (:)
ble. By looking at the behavior of d(s) as |s| + = one can try

to pull out a leading exponential term either theoretically or
numerically from computed results. - Geometrical theory of dif-
fraction (GTD) considerations can help to find leading high

frequency terms.

~Note that if n(¥(s)) is used for plots we have

tn(E(s)) = 2n(d(s)) - 2n(d_(s))

t(d(s)) - &(s) (s

Thus consideration of zh(a(s))'for large |s| Cah indicate some
convenient choices of §(s) and perhaps simplify the problem -
somewhat. ’ ’ ‘ ' e :

One purpose of choosing a scaling function is not for plot- ‘
ting, but to improve numerical accuracy in the numerical evalu- ' ;}
ation of contour integrals, including those. for the argument D
number and the Cauchy integral formula (including for the de- |
rivatives with respect to s). Having chosen a contour C one (:)
may wish to avoid large variations of Id(s)l around the contour. z
A scaling function dg(s) such as discussed above can help in i
this regard. If dg(s) is used to help in finding zeros and ‘
poles of d(s) (or even saddles of d(s) with some modifications
in the procedure) from the numerical approximations to the con-
tour integrals, then ds(s) need not be included in the plots.

Even if dg(s) is used to help calculate the function values the
results for f(s) can be multiplied by dg(s) to obtain d(s)
which is then plotted. v

The use of a scaling function as(s) can then be helpful in
calculating and displaying d(s). However,_the scaling function
need not appear in the final results. If d(s) has special
properties associated with the physical quantity it represents,
then one may wish to display d(s) directly without a scaling
function. ’ ' o T ‘
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.. Recognizing that the solutions of electromagnetic problems
are analytic functions of the complex frequency s except at
singularities is the basis of the singularity expansion method
(SEM). This analytic property with respect to s allows the use
of various complex variable theorems in more efficiently obtain-
ing desired information about the solution. Note that branch
cuts and essential singularities are included in the general
SEM but they are avoided in the use of certain special tech~
niques involving contour integrals. o

_ In particular the argument number integral and the Cauchy
integral formula, including its derivatives with respect to s,
can be used to find information about a function_£(s) inside
the contour from its values on the contour. If f(s) redquires
lengthy calculations, such as the determinant of a large matrix,
then such techniques based on contour integrals can be used to
more efficiently find the function values, including its zeros,
poles, and saddles. Since f(s) is usually conjugate symmetric

- (or can often be made so) then additional benefits can be gained
for contours near the Re([s] axis by making the contours conju-
gate symmetric as well to utilize the conjugate symmetry of
f(s). In such cases the contour integrals effectively reduce
'to integrals over a half contour in the upper half s plane.

The use of the argument number integral points out some
interesting properties _of the singularities of the function
f(s) of interest. If f(s) is a continuous function of some pa-
rameter P of interest (say an impedance) then as zeros and
poles coalesce and split the argument number for a contour sur-
rounding these zeros and poles is conserved. The argument num—
ber can then be thought of as a singularity number. This sin-
gularity number is conserved much as a quantum number in quan-
tum mechanics. Note that the function is not allowed to be
identically zero. o

- Other points of particular interest are saddles where

f(s) # 0 but df/ds = 0. Using the argument number integral on
df/ds saddles can be found in a manner similar to finding zeros
of f£(s). Saddles coalesce and split with the saddle number
conserved provided zeros and poles are kept out of the process.
Including the presence of zeros (of second or higher order) and
poles a generalized saddle number can be defined. The gener-
alized saddle number is conserved. Note that df/ds is not al-
lowed to be identically zero. :

Having techniques for calculating and displaying f(s) in
terms of #n(f(s)) and pointing out the zeros, poles, and sad-
dles, one can then try to modify the pole-zero pattern of f(s).
If £(s,P) is considered in a simple form such as f£(s) + P then
by appropriate choice of P the zeros of f(s,P) can be shifted,
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hopefully to more desirable positions. This is basically a o
synthesis procedure for antennas and scatterers. It is especi=
ally appropriate for synthesizing the transient or extremely
wideband properties cf antennas and scatterers. In the form
f(s) + P standard root locus procedures apply for this synthe-
sis, much as in the case of circuits or control systems. Noter
that f(s) need not be a determinant but can be an eigenvalue.
As will hopefully be discussed in a future note f(s) can be aw
eigenvalue and P can be a loading impedance function, making
the synthesis decompose according to the eigenfunctions. '
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