Mathematics Notes

Note 18

March 1970

SEVER: A Routine for Computing Symmetric Matrix Eigenvalues and Eigenvectors with Error Bounds

W. R. Gavin, 9422 Sandia Laboratories, Albuquerque

Abstract

Subroutine SEVER computes a complete eigensystem with error bounds for a real symmetric matrix. Householder's method is used to reduce the matrix to tridiagonal form. The eigenvalues and eigenvectors of the tridiagonal matrix are computed by the QR algorithm. The computed eigenvalues are subjected to one Rayleigh quotient correction using the computed eigenvectors. Upper bounds on the absolute errors of the computed eigensystem are calculated.

Key word: mathematics

MON 18

1

SC-M-70-26

SEVER: A ROUTINE FOR COMPUTING SYMMETRIC MATRIX EIGENVALUES AND EIGENVECTORS WITH ERROR BOUNDS

W. R. Gavin, 9422 Sandia Laboratories, Albuquerque

March 1970

ABSTRACT

Subroutine SEVER computes a complete eigensystem with error bounds for a real symmetric matrix. Householder's method is used to reduce the matrix to tridiagonal form. The eigenvalues and eigenvectors of the tridiagonal matrix are computed by the QR algorithm. The computed eigenvalues are subjected to one Rayleigh quotient correction using the computed eigenvectors. Upper bounds on the absolute errors of the computed eigensystem are calculated.

-Key word: mathematics

r

FOREWORD

The Sandia Laboratories Mathematical Program Library consists of a number of dependable, high-quality, general-purpose, mathematical computing routines. The standards established for the library require that these routines be mathematically sound, effectively implemented, extensively tested, and thoroughly documented. This report documents one such routine.

The library emphasizes the effective coverage of various distinct mathematical areas with a minimum number of routines. Nevertheless, it may contain other routines similar in nature but complementary to the one described here. Additional information on the mathematical program library, a description of the standard format for documenting these routines, and a guide to other routines in the library are contained in SC-M-69-337.

This report is also identified within Sandia Laboratories as Computing Publication ML0005/ALL. This report and its corresponding library routine are expected to be available from COSMIC shortly after publication.

CONTENTS

			<u>Page</u>
1.	Intr	oduction	5
	1.1	Background	5
	1.2	Applicable Programming Languages and	
		Computer Systems	- 5
	1.3	Considerations Regarding Use	6
2	Ilees		7
۷.	Usag '	;e	/
	2.1	Entry	7
	2.2	Description of Arguments	7
	2.3	Restrictions Between Arguments	9
	2.4	Principal Uses with Examples	• 9
	2.5	Library Routines Explicitly Required	10
	2.6	User-Supplied Routines Required	10
	2.7	Cautions and Restrictions	10
	2.8	Error Conditions, Messages, and Codes	11
3.	Math	nematical Methods	12
	3.1	Statement of Problem	12
	3.2	Methods Used	12
	3.3	Mathematical Range and Domain	13
	3.4	Equations and Discussion	13
	3.5	Error Analysis, Bounds, and Estimates	15
4.	Prog	gramming Methods	18
5.	Spac	e. Time, and Accuracy Considerations	23
	opac		
6.	Test	ing Methods	23
	6.1	General	23
	6.2	Kinds of Tests Used	24
	6.3	Normal Cases Tested	25
	6.4	Difficult Cases Tested	25
	6.5	Range, Error, and Fault Checks Tested	28

3

I

CONTENTS (Cont)

water and the street

																								<u>Page</u>
7.	Remarks	3	• •	•	••	•	•	•	•	•	•••	•	•	• •	•	•	•		•	•	•	•	•	29
8.	Certifi	cat	tion	1	•••	•	•	•	•	•	•••	•	•	• •	•	•	•	•	•	•	•	•	•	29
REFI	ERENCES	•	• •	•	• •	•	• •	•	•	•	• •	•	•	• •	•	•	•	•	•	•	•	•	•	31
APPI	ENDIX A		The	e SI	EVEI	ζ Li	ist	inį	g	•	• •	•	•	• •	•	•	•	•	•	•	•	•	•	33
APPI	ENDIX B		Tes	st I	Resu	ilts	S 0	f	SEV	'ER	on	tł	ıe	CDC	6	600) .	•	•	•	•	•	•	43
APPI	ENDIX C		Cor	ntro	51 (Caro	ls	for	r U	Jsi	ng	SEV	/ER	or	ı tl	he	CDO		66	00)	•	•	59

SEVER: A ROUTINE FOR COMPUTING SYMMETRIC MATRIX EIGENVALUES AND EIGENVECTORS WITH ERROR BOUNDS

1. Introduction

1.1 Background

SEVER was written to provide the Sandia Mathematical Program Library with a quality routine for computing an eigensystem with error bounds of a real symmetric matrix. The methods used in SEVER were chosen and the routine was constructed to avoid some of the more common deficiencies in existing routines for symmetric matrix eigensystem calculation. Among such deficiencies are the lack of precision in the calculation of clustered or multiple eigenvalues, inability to handle eigenvalues which differ only in sign, nonorthogonality of eigenvectors corresponding to eigenvalues of multiplicity greater than one, and lack of any measure of the precision or reliability of the results.

The ALGOL routine of Martin et al⁸ was converted to FORTRAN and constitutes that segment of SEVER which reduces the input matrix to tridiagonal form.

The ALGOL routine of Bowdler et al³ was converted to FORTRAN and is a subroutine called by SEVER to compute the eigenvalues and eigenvectors of the tridiagonal matrix.

1.2 Applicable Programming Languages and Computer Systems

SEVER is written in a subset of Control Data 6600 FORTRAN. Except for two DATA statements containing error messages and two replacement statements involving octal literals, it is believed that the program conforms to American National Standard FORTRAN. However, complete portability of the routine is not implied and, because of machine-dependent

constants (e.g., the smallest positive floating point number which when added to 1.0 yields a floating point sum not 1.0), modified versions of SEVER may be required for machines other than the CDC 6600.

SEVER has executed successfully and has been tested thoroughly under the Control Data 6600 SCOPE operating system with the FUN and RUN compilers.

This routine is maintained for the convenience of the user on a library file on the CDC 6600 and is accessible by means of one control card described in Appendix C.

1.3 <u>Considerations Regarding Use</u>

SEVER computes all of the eigenvalues of a real symmetric matrix and a set of orthonormal eigenvectors. An upper bound on the absolute error of each computed eigenvalue is returned as well as an upper bound on the absolute error of the computed eigenvector. Lengths of residual vectors are also returned. Double precision eigenvalues are computed and returned but these values should be used in conjunction with the eigenvalue absolute error bounds. Both the single and double precision eigenvalues are returned in nonincreasing algebraic order.

SEVER may be used to compute an eigensystem for a complex Hermitian matrix. See Section 7 for details on how this may be done.

The nature of arithmetic and format conversion may cause zero eigenvalues and zero components of eigenvectors to look as if they were nonzero numbers which are very small in absolute value. In these cases the user must determine whether a small eigenvalue or a small eigenvector component is actually zero (see Section 2.7).

2. Usage

2.1 Entry

The calling sequence is:

CALL SEVER (A, EV, VEC, ERVAL, DPA, N, NDIM, KER)

2.2 <u>Description of Arguments</u>

In the following description an argument which must be preset by the calling program before a call to SEVER is referred to as an input argument. An argument which will return with a value determined in SEVER is referred to as an output argument. SEVER has no arguments which are both input and output. An example of a calling sequence is given in Section 2.4.

Α

A real input array which must be dimensioned with exactly NDIM rows and at least NDIM columns. Normally, A should be dimensioned (NDIM, NDIM). The leading N by N subarray of A must contain the real symmetric matrix whose eigensystem is to be computed. A is returned unchanged.

EV

A real output array which, upon return from SEVER, contains the computed eigenvalues in nonincreasing algebraic order. EV must be dimensioned at least N in the calling program, and normally would be dimensioned NDIM.

VEC The real output array which, upon return from SEVER, contains the computed eigenvectors. The eigenvectors are stored in the columns of VEC corresponding to the eigenvalues in EV. That is, the k-th column of VEC contains a computed eigenvector of length one corresponding to the computed eigenvalue in the k-th element of array EV. VEC must be dimensioned with exactly NDIM rows and at least NDIM columns. Normally, VEC would be dimensioned (NDIM, NDIM).

ERVAL The real output array containing upper bounds on the absolute errors of the computed double precision eigenvalues (see Section 2.7). In case it is not possible to bound the error on some eigenvalue, a -1.0 is returned in the element of ERVAL corresponding to that eigenvalue. ERVAL must be dimensioned at least N and normally would be dimensioned NDIM in the calling program.

DPA A double precision output array which must be dimensioned (NDIM, 3) and declared type double in the calling program. DPA must be supplied by the user in order that certain inner products in the Rayleigh quotient eigenvalue correction and error calculations may be accumulated in double precision. Upon return, the first column of DPA contains the Rayleigh quotient eigenvalues in double precision. The second column contains an upper bound on the absolute error (= relative error) of the computed eigenvector as measured in the two norm. If such a bound cannot be computed, i.e., ERVAL(K) = -1, the length of the k-th residual vector (Section 4) is returned. The third column of DPA contains the length of the residual vector in every case.

The integer order of the matrix to be resolved. N must not be smaller than 3. (The distinction between N and NDIM facilitates the solution of different size problems in successive calls in the same execution of the calling program.) N is an input argument.

NDIM The integer number of rows and usually the number of columns allocated to A in the calling program. NDIM must not be smaller than N. NDIM is an input argument.

KER An output error indicator. Its value upon return is 1 for normal execution, 2 if the dimensions and size of the matrix are inconsistent, and 3 if more than 30 QR iterations are required for some eigenvalue.

N

2.3 <u>Restrictions Between Arguments</u>

A and VEC Treated as square arrays, and each must be dimensioned with exactly NDIM rows and at least N columns. Normally each of these arrays should be dimensioned (NDIM, NDIM).

EV and ERVAL Arrays, each of which must be dimensioned at least N. Normally each array should be dimensioned NDIM.

 A, EV, ERVAL, Must be distinct arrays. If KER is returned as
 VEC, and DPA 2, no values are assigned to EV, VEC, ERVAL or DPA. If KER is returned as 3, the values assigned to EV, VEC, ERVAL, and DPA may not be meaningful.

N and NDIM Must satisfy $3 \le N \le NDIM$.

2.4 Principal Uses with Example

The following is a segment of a possible calling program for computing the eigensystem of a 4 x 4 real symmetric matrix A for which up to 25 rows and columns are allocated:

PROGRAM EIGVAL(INPUT,OUTPUT)
DIMENSION A(25,25),EV(25),ERVAL(25),VEC(25,25)
DOUBLE PRECISION DPA(25,3)
DO 1 I = 1,4
1 READ 101, (A(I,J),J=1,4)

101 FORMAT (4E10.3)

CALL SEVER (A, EV, VEC, ERVAL, DPA, 4, 25, KER)

Print results of calculation

END

Note that N and NDIM are the only arguments which may appear as constants in the calling statements.

9

Ιſ

2.5 Library Routines Explicitly Required

SEVER requires the standard routines SQRT, DSQRT, DBLE, IABS, and ABS, and the Sandia Mathematical Program Library routine ERRCHK.¹

SEVER also references QRVEC which is a subordinate routine contained in the Sandia library. QRVEC is used only by SEVER and is conceptually a part of SEVER.

2.6 <u>User-Supplied Routines Required</u>

SEVER requires no user-supplied routines.

2.7 <u>Cautions and Restrictions</u>

Even though a symmetric matrix is determined by either its upper or lower triangle, the whole matrix must be supplied to the routine. No symmetry check is made. If a nonsymmetric matrix is supplied to the routine, the results will be spurious.

It is extremely likely that zero eigenvalues and zero components of eigenvectors will be returned as very small nonzero numbers. If the absolute value of a computed eigenvalue is smaller than the corresponding value in ERVAL a necessary condition for a zero has been satisfied. The true value of such an eigenvalue may indeed be zero but it is not possible for the routine to make such a determination.

A value of -1.0 for the computed error of an eigenvalue does not necessarily mean that that eigenvalue and its eigenvector are of poor quality. It merely means that it was not possible to compute an upper bound on the absolute error of the computed eigenvalue and computed eigenvector. (See Section 4 for full details on the error calculation.) Furthermore, if some eigenvalue error is returned as -1.0, so must at least one of its adjacent neighbors in the ERVAL array. The error calculation cannot fail for a single eigenvalue.

The computed absolute error bound applies to the computed double precision eigenvalue. The computed single precision eigenvalue may have

a truncation error induced in its last bit. In particular, on the CDC 6600 the single precision eigenvalue may have a truncation-induced error of $2^{\beta-48}$ where the computed eigenvalue is represented by $\alpha 2^{\beta}$ with $1/2 \leq \alpha < 1$.

The second and third columns of the array DPA, which contain vector errors and residual vector lengths, respectively, are not meaningful to full double precision. In fact, only the first significant digit and exponent are usually of any interest.

The routine makes no checks for fault conditions such as underflow or overflow and, if these fault conditions occur, the results may be invalidated.

The routine will not handle a matrix smaller than 3 x 3.

2.8 Error Conditions, Messages, and Codes

The subroutine SEVER contains two error messages. If the input variables N and NDIM do not satisfy $3 \le N \le NDIM$, the message

INPUT DIMENSIONS ARE INCONSISTENT

is printed and KER is returned as 2.

If more than thirty QR iterations are required for some eigenvalue, the message

NO CONVERGENCE IN 30 QR ITERATIONS

is printed and KER is returned as 3.

The error messages are processed by the Sandia Mathematical Program Library routine ERRCHK; the occurrence of either error message results in a fatal error unless the user has previously made an appropriate call to ERRSET.¹ To make error conditions nonfatal, ERRSET must be called before SEVER is called. For example, to make the errors nonfatal and set a maximum of 10 messages to be printed the following call must be made:

CALL ERRSET(10,0).

If ERRSET has been called in order to make the error conditions nonfatal and the input dimensions are inconsistent, then KER is set to 2, a return to the calling program is made, and no computations are done. If ERRSET has been called and more than 30 QR iterations are required for some eigenvalue, then KER is set to 3 and a return is made to the calling program. In this case the results may be spurious.

3. Mathematical Method

3.1 Statement of the Problem

Let A, the machine representation of a real symmetric matrix, have eigenvalues $\{\lambda_i\}$ and orthonormal eigenvectors $\{x_i\}$ so that $Ax_i = \lambda_i x_i$. The problem then is to compute scalars $\{\overline{\lambda_i}\}$, vectors $\{\overline{x_i}\}$, with error bounds $\{\varepsilon_i\}$ and $\{\eta_i\}$ so that $|\lambda_i - \overline{\lambda_i}| \le \varepsilon_i$ and $||x_i - \overline{x_i}|| \le \eta_i$. Hopefully, $|\lambda_i - \overline{\lambda_i}|$ and $||x_i - \overline{x_i}||$ are small and "close" to the ε_i and η_i . That is, it is desirable for the error bounds to be small and sharp.

3.2 Methods Used

The n x n matrix A is reduced to tridiagonal form by a sequence of n-2 orthogonal similarity transformations each of which makes one row and one column of the off tridiagonal zero. The eigenvalues and eigenvectors of the tridiagonal matrix are computed by a version of the QR algorithm especially modified for symmetric tridiagonal matrices.³ The Rayleigh quotient corrected eigenvalue is calculated using the computed eigenvectors. Each error bound is computed as a function of the length of the residual vector and of the separation of the eigenvalue from its nearest neighbor.

3.3 Mathematical Range and Domain

SEVER computes an eigensystem for a real symmetric matrix. The eigenvalue range is the real line, and the eigenvector range is the unit n-sphere.

The precise range and domain of the subroutine would require a very difficult and pedantic description.

3.4 Equations and Discussion

The real symmetric matrix A is reduced to tridiagonal form by a sequence of orthogonal similarity transformations generated by matrices of the form I-2uu^T, where I is the identity matrix and u is a column vector of length one. That is, let $A_1 = A$ and $A_{i+1} = P_i^{-1}A_iP_i$ where $P_i = I - 2u_iu_i^T$. A_i is tridiagonal in its first i-1 rows and columns, and A_{n-1} is the desired tridiagonal form. The matrices P_i are called elementary Hermitians and the method of tridiagonalization is called Householder's method (Reference 11, p. 342).

Each similarity transformation can be conveniently carried out as follows:

$$A_{2} = (I - 2uu^{T})A_{1}(I - 2uu^{T})$$

= $A_{1} - 2uu^{T}A_{1} - 2A_{1}uu^{T} + 4(u^{T}A_{1}u)uu^{T}$ (1)
= $A_{1} - (uq^{T} + qu^{T})$

where $q = p - \alpha u$, p = 2Au and $\alpha = u^{T}p$.

Thus no matrix multiplications are required to perform each similarity transformation.

For the first transformation, the vector u is given by $u = \frac{a-c}{\|a-c\|}$ where a is the first column (or row) of A, $c = (a_{11}, \pm s, 0, ..., 0)^T$ and s² is the sum of the squares of the off diagonal elements of the

first row. Succeeding transformations are carried out by considering a matrix of one smaller order each time.

The QR algorithm for an arbitrary real matrix A consists of forming a sequence $\{A_k\}$ as follows: let $A_1 = A$ and for each k factor $A_k = Q_k R_k$ where Q_k is orthogonal and R_k is upper triangular and define $A_{k+1} = R_k Q_k$. Note that $A_{k+1} = R_k Q_k = Q_k^{-1} A_k Q_k$; thus A_{k+1} is orthogonally similar to A_k and, therefore, to A_1 . The factorization $A_k = R_k Q_k$ can always be carried out,⁸ and if A_k is nonsingular it is equivalent to a Gram-Schmidt orthogonalization of the linearly independent column of A_k .

The convergence of the QR algorithm for arbitrary matrices is somewhat too detailed for discussion here (see Reference 4, p. 269). For real symmetric matrices, however, convergence of the QR algorithm to a diagonal matrix is guaranteed, and for real symmetric tridiagonal matrices the implementation of this algorithm assumes a rather simple form (see Section 4).

The algorithm may be modified to increase its rate of convergence by redefining R_k at each stage by $R_k = Q_k^T (A_k - \alpha_k I)$ and choose $A_{k+1} = R_k Q_k$. In this case A_{k+1} is not similar to A_1 but is similar to $A_1 - \Sigma \alpha_k I$). The choice of α_k is discussed in Section 4.

Let the eigenvalues and eigenvectors computed by the QR algorithm be $\overline{\lambda}_i, \ldots, \overline{\lambda}_n$ and $\overline{x}_1, \ldots, \overline{x}_n$. Define the Rayleigh quotient $\rho_i = \frac{\overline{x}_i^T A \overline{x}_i}{\overline{x}_i^T \overline{x}_i}$ where A is the original matrix. Let ε_i be the length of the

residual vector, $\epsilon_i = ||A\overline{x}_i - \rho_i \overline{x}_i||$ and let a_i be the distance from the true eigenvalue λ_i to its nearest neighbor. Then the results which allow calculation of the error bounds of the computed eigensystem are

$$|\lambda_{i} - \rho_{i}| \le \varepsilon$$
,
 $|\lambda_{i} - \rho_{i}| \le \frac{\varepsilon^{2}/a_{i}}{1 - \varepsilon^{2}/a_{i}^{2}}$, and

$$|\mathbf{x}_{i} - \mathbf{x}_{i}||^{2} \leq \frac{\varepsilon^{2}}{a_{i}^{2}} \left(1 + \frac{\varepsilon^{2}}{a_{i}^{2}}\right),$$

(4)

(2)

(3)

where the vectors x_i and $\overline{x_i}$ have length one. For proofs of these results, see Reference 12. Note that these inequalities yield upper bounds on the absolute errors of the computed eigensystem. Furthermore, since $||x_i|| = 1$ the eigenvector inequality bounds both the relative and absolute errors.

3.5 Error Analysis, Bounds, and Estimates

The following three matrix norms are used:

$$||A||_{2} = \max \{ ||Ax|| : ||x|| = 1 \}$$
(5)

where ||x|| is the ordinary length of x, or $||x||^2 = x^T x$. Note that, for symmetric matrices, $||A||_2$ is the largest eigenvalue in absolute value of A.

$$\|A\|_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|, \qquad (6)$$

the maximum absolute value row sum of A.

$$\|A\|_{E}^{2} = \sum_{ij} |a_{ij}|^{2} = \sum_{i} |\lambda_{ij}|^{2}$$
,

where the λ_i are the eigenvalues of A.

It is true for all matrices that $||A||_2 \leq ||A||_E$ and if λ is any eigenvalue of A, then $|\lambda| \leq ||A||_t$ for t = 2, ∞ , or E. If A is real symmetric then $||A||_2 \leq ||A||_{\infty}$. While $||A||_E$ and $||A||_{\infty}$ do not bound the eigenvalues as sharply as $||A||_2$, they have the advantage of ease of computation.

The significant results concerning a posteriori error analysis of real symmetric matrix eigenvalue calculations are as follows: Let A, B, and A+B be real symmetric matrices with eigenvalues $\{\lambda_i\}, \{\mu_i\}, \text{ and } \{\nu_i\}, \{\mu_i\}, \{\mu_i$

15

(7)

respectively, subscripted in nonincreasing order. Then

$$|\lambda_{i} - \nu_{i}| \leq ||B||_{2} = \max_{i} |\mu_{i}| \leq ||B||_{E}$$
 (8)

(Reference 9, p. 100) and

$$\Sigma(\lambda_{i} - \nu_{i})^{2} \leq \left\|B\right\|_{E}^{2} = \Sigma \left|\mu_{i}\right|^{2}$$
(9)

(Reference 11, p. 104). Thus, unlike the matrix inversion problem or the nonsymmetric eigenvalue problem, the eigenvalue problem for real symmetric matrices is not ill conditioned. In fact, it is Lipschitz continuous.

Suppose the real symmetric matrix A, whose elements are represented as decimal fractions, is presented to a digital computer algorithm for eigenvalue calculation. The algorithm computes not the eigenvalues of A but those of a slightly perturbed matrix A+D. The perturbation D arises from inexact machine representation of A and from errors induced in the diagonalization of A.

Equation 8 can be used to bound the errors arising from inexact machine representation of A. Suppose δ is the maximum relative error in the floating point representation of a real number. For most machines δ is bounded above by 1/2 raised to one less than the mantissa length in bits. The matrix A in the machine is A+ Δ where the (i,j) element of Δ is δ_{ij} and $|\delta_{ij}| \leq |a_{ij}| \delta$. Thus, using Equation 8 and the fact that $||\Delta||_2 \leq ||\Delta||_{\infty}$, the result is that n $\max_{i,j} |a_{ij}|$ is the largest possible error in any computed eigenvalue due to imprecise machine representation of the initial data.

While analytical expressions for upper bounds of the error induced in the diagonalization exist, they are cumbersome to compute and are usually quite pessimistic (Reference 11, p. 297). At any rate, these errors are part of the a posteriori errors described in Sections 3.4 and 4.

Unfortunately, the eigenvector problem for real symmetric matrices is not as well conditioned as in the eigenvalue problem. In fact, the

eigenvectors of a real symmetric matrix may not even depend continuously on the matrix elements. However, if an eigenvalue is sufficiently well separated from its nearest neighbor, then the following shows that its corresponding eigenvector calculation is well conditioned: Let A and A+B be real symmetric matrices with eigenvalues $\{\lambda_i\}$ and $\{\nu_i\}$ and corresponding eigenvectors $\{u_i\}$ and $\{v_i\}$ of length one. Let α_k be the distance from λ_k to its nearest neighbor. If $\alpha_k > ||B||_2$ then

 $||u_k - v_k|| \le \gamma (1 + \gamma^2)^{1/2}$

where $Y = ||B||_2/(\alpha_k - ||B||_2)$, see Reference 9.

To use this result, suppose B is the perturbation matrix resulting from inexact machine representation of the elements of A, $||B||_2 \le n\delta$ and, if α is sufficiently larger than $||B||_2$, then $||u_k - v_k||$ is approximately $n\delta/\alpha$. A satisfactory qualitative statement of this result is that if the separation of an eigenvalue is significantly greater than the norm of the perterbation matrix then the corresponding eigenvector problem is well conditioned.

The eigenvector error induced by inexact diagonalization is accounted for in the a posteriori error bound of Equation 4.

Another source of error in the eigensystem calculation is inexact knowledge of the input matrix A. Upper bounds in the perturbations thus caused may be accounted for exactly as those caused by inexact machine representation of the matrices. For example, consider the realistic physical situation in which each element of a 200 x 200 matrix has an absolute error bounded by 5×10^{-3} , i.e., each element is correctly rounded to the nearest hundredth. In this case the norm of the error matrix $\|\Delta\|_{\infty}$ is bounded by $(200)(5)(10^{-3}) = 1$. Thus, the best possible bound on the absolute error of the computed eigenvalues is one. This rather pessimistic result is not dependent upon the method of eigenvalue calculation but is simply a property of the matrix. However, the absolute error bound can be reduced somewhat in the case of sparse or bandwidth-limited matrices.

(10)

4. Programming Method

The program divides naturally into four parts: the tridiagonalization, the calculation of eigenvalues and eigenvectors, the Rayleigh quotient correction, and the calculation of error bounds.

Before tridiagonalization the matrix A is copied into the array VEC, and the tridiagonalization and QR algorithm are carried out entirely within VEC. The tridiagonalization is carried out as described in Section 3.4. If, at the i-th stage, the sum of the squares of the off tridiagonal elements is sufficiently small no transformation is necessary. Indeed if this sum is small but not exactly zero then the corresponding transformation is in danger of not being orthogonal. Such a transformation is skipped if the sum of the squares of the off tridiagonal elements is less than the quotient of the smallest positive floating point number and the smallest positive floating point number which when added to 1.0 yields a sum not 1.0.

The off tridiagonal places of VEC are used to store the tridiagonalizing transformations for later use in calculating eigenvectors. In particular if $P^{-1}AP$ is tridiagonal and x is an eigenvector of $P^{-1}AP$ then Px is an eigenvector of A.

The tridiagonalization is carried out in single precision.

For convenience in programming, the QR algorithm is restated as a QL algorithm (i.e., the triangular factor is lower rather than upper). The algorithm is then stated:

$$Q_k(A_k - \alpha_k I) = L_k ,$$

 $A_{k+1} = L_k Q_k^T$.

(11)

Note that the Q_k here are the transposes of the Q_k in Section 3.4.

Each Q_k is a product of Jacobi-like rotations P_i :

$$Q_k = P_1 P_2, \dots, P_{n-1}$$
 (12)

where each P_i is of the form

$$P_{i} = \begin{bmatrix} 1 & & & \\ 1 & & & \\ & \ddots & & \\ & s_{i} & c_{i} \\ & & \ddots & \\ & & & 1 \\ & & & 1 \end{bmatrix}$$

and the c_i and s_i are the cosine and sine of an angle chosen so that

$$P_1 P_2, \dots, P_{n-1} (A_k - \alpha_k I) = L_k$$
 (14)

is lower triangular.

The algorithm then becomes:

$$P_{1} P_{2}, \dots, P_{n-1} (A_{k} - \alpha_{k}I) = L_{k} ,$$

$$A_{k+1} = L_{k} P_{n-1}^{T} P_{n-2}^{T}, \dots, P_{1}^{T} .$$
(15)

The matrix ${\rm L}_{\rm k}$ can have nonzero elements only on the main diagonal and first and second subdiagonals. Thus

19

(13)

The product $L_k P_{n-1}^T P_{n-2}^T$, ..., P_1^T reintroduces symmetry and has only one superdiagonal of nonzero elements. Hence, the second subdiagonal of the product is zero and there is no need to determine the t_i .

The lower triangular factor L_k and the (k+1)st iterate A_{k+1} can be determined simultaneously as follows (although a sea of algebra is necessary to verify it): Let $d_i^{(k)}$ i = 1, ..., n be the diagonal elements of A_k and $e_i^{(k)}$ i = 1, ..., n-1 be the subdiagonal elements. Then proceeding from n to 1 we have:

$$p_{n} = d_{n}^{(k)} - \alpha_{k}, c_{n} = 1, s_{n} = 0$$

$$r_{i+1} = (p_{i+1}^{2} + (e_{i}^{(k)})^{2})^{1/2}$$

$$g_{i+1} = c_{i+1} e_{i}^{(k)}$$

$$h_{i+1} = c_{i+1} p_{i+1}$$

$$e_{i+1}^{(k+1)} = s_{i+1} r_{i+1}$$

$$c_{i} = p_{i+1}/r_{i+1}$$

$$s_{i} = e_{i}^{(k)}/r_{i+1}$$

$$p_{i} = c_{i} (d_{i}^{(k)} - \alpha_{k}) - s_{i}g_{i+1}$$

$$d_{i+1}^{(k+1)} = h_{i+1} + s_{i}[c_{i}g_{i+1} + s_{i} (d_{i}^{(k)} - \alpha_{k})]$$

(17)

for i = n-1, n-2, ..., 1 and

$$e_1^{(k+1)} = s_1 p_1 \qquad d_1^{(k+1)} = c_1 p_1$$
 (18)

Suppose the (k-1)st eigenvalue has been found and is stored in d_{k-1} . At this stage the diagonal of the iterated matrix has eigenvalues in the first k-l places and zeros in the first k-l subdiagonal elements $e_1, \ldots e_{k-1}$. To find the k-th eigenvalue the QL iterations are continued until e_k is negligible or until 30 iterations are carried out. Furthermore, suppose some e_j , j = k+1, ..., n is negligible, then the QL iterations are carried out only on the submatrix with diagonal d_k , ..., d_j . That is, the matrix is considered to be the direct sum of two matrices of smaller order.

The criterion for negligibility is as follows: Just before iterating for the k-th eigenvalue set $h_k = \varepsilon(|d_k| + |e_k|)$ then any off diagonal element e_i for which $|e_i| \le \max h_j$, $j = 1, \ldots, k$ is regarded as negligible, where ε is the smallest positive floating point number which when added to 1.0 yields a sum not 1.0. On the CDC 6600 ε is taken to be 2^{-47} .

At the start of the iteration to find the k-th eigenvalue the shift α_k is taken to be the eigenvalue of the matrix

which is nearer to d_k. This eigenvalue can be expressed as

$$d_{k} - \frac{e_{k}}{p + \operatorname{sign}(p) \sqrt{p^{2} + 1}},$$

where
$$p = \frac{d_{k+1} - d_k}{2 - e_k}$$
.

The QR algorithm for symmetric tridiagonal matrices is known to converge (Reference 11, p. 548), and in testing it converged very rapidly. The routine allows up to thirty iterations per eigenvalue but this number is quite high. In testing on the CDC 6600 no more than seven were ever required.

The QR algorithm is carried out in single precision. For a quite detailed discussion of the computer implementation of this algorithm, see Reference 3.

The Rayleigh quotient P_i is computed using the relationship

$$\rho_{i} = \overline{x}_{i}^{T} A \overline{x}_{i} = \overline{x}_{i}^{T} (\overline{\lambda}_{i} \overline{x}_{i} + \eta_{i}) = \overline{\lambda}_{i} + \overline{x}_{i}^{T} \eta_{i}$$
(19)

where $\overline{\lambda_i}$ and $\overline{x_i}$ are the computed eigenvalue and eigenvector respectively, A is the original matrix, and η_i is the residual vector $A\overline{x_i} - \overline{\lambda_i}\overline{x_i}$. The calculation of ρ_i is carried out in double precision. The $\overline{\lambda_i}$ is then changed from its QR computed eigenvalue to ρ_i which is then converted to single precision. Thus, upon return, EV contains the single precision versions of the members of the first column of DPA. Equation 2 of Section 3.4 shows that there is a true eigenvalue λ in the interval $[\rho_i - \epsilon_i, \rho_i + \epsilon_i]$. Thus a safe lower bound a_i on the distance between λ_i and its nearest neighbor may be computed:

$$\mathbf{a}_1 = \mathbf{\rho}_1 - \mathbf{\varepsilon}_1 - \mathbf{\rho}_2 - \mathbf{\varepsilon}_2 , \qquad (20)$$

$$\mathbf{a}_{i} = \min[\boldsymbol{\rho}_{i} - \boldsymbol{\varepsilon}_{i} - \boldsymbol{\rho}_{i+1} - \boldsymbol{\varepsilon}_{i+1}, \boldsymbol{\rho}_{i-1} - \boldsymbol{\varepsilon}_{i-1} - \boldsymbol{\rho}_{i} - \boldsymbol{\varepsilon}_{i}] \quad (21)$$

for i = 2, ..., n-1, and

 $a_n = \rho_{n-1} - \epsilon_{n-1} - \rho_n - \epsilon_n .$ (22)

The expressions for the eigenvalue and eigenvector errors, Equations 3 and 4, are useful only if $\varepsilon << a$. Accordingly, if $10 \cdot \varepsilon \geq a$ then no error calculation is attempted and the corresponding value of ERVAL is returned as -1.0. If $10\varepsilon < a$ then the eigenvalue and eigenvector errors are computed as ε^2/a and ε/a respectively and the factors $(1 - \varepsilon^2/a^2)^{-1}$ and $(1 + \varepsilon^2/a^2)$ of Equations 3 and 4 are ignored.

5. Space, Time, and Accuracy Considerations

The size of SEVER is about 1200_{10} words on the CDC 6600. In addition, at least $2n^2 + 8n$ words for the matrix, eigenvalues, eigenvectors, and error bounds are required and are supplied by the user's calling program. On the CDC 6600 it is possible to resolve a 200 x 200 matrix.

For n larger than about 15, the time required for a complete eigensystem calculation is very nearly proportional to n^3 . For n smaller than 15, time required for subroutine linkage and initialization dominate and no simple relationship between time and n seems to exist. See Appendix B for machine-dependent details.

Accuracy is discussed in Section 3.5 and is not subject to user control. For machine-dependent details see Appendix B.

6. Testing Methods

6.1 General Discussion

There are many ways to test a routine which computes the eigensystem of a real symmetric matrix. A list of possible tests includes:

- (1) det $(A \lambda I) = 0$
- (2) trace (A) = $\sum \lambda_i$
- (3) $Ax = \lambda x$ or $||Ax \lambda x|| = 0$
- (4) Sum of idempotents, i.e., $A = \sum \lambda_i x_i x_i^T$, where ||x|| = 1
- (5) Computed solution compared to known exact solution
- (6) Orthogonality of computed eigenvectors

- (7) The eigenvalues of A + I are 1 plus those of A, and the eigenvectors the same for each. Similarly the eigenvalues of αA are α times those of A.
- (8) Extensive running of the routine for "shakedown" purposes and timing determinations
- (9) Plausible results.

Items (1) and (4) are considered inconclusive and unnecessarily difficult to compute. Item (2) offers no additional information or assurance that is not given by other tests used to authenticate SEVER.

From a logical point of view, successful testing, no matter how extensive, is a necessary but not a sufficient condition for a routine to be valid.

6.2 Kinds of Tests Used

Item (3) is an internal check in SEVER. The value of $||AX_i - \overline{\lambda_i x_i}||$ is returned in DPA(I,3) for the I-th eigenvalue-eigenvector pair. Of course one must test for a small value, since a zero will occur rarely. This test is quite inconclusive.

Item (5) is probably the most important test. Assurance of authenticity, a measure of precision of the routine, and a check on the sharpness of the error bounds are obtained by comparing true and computed solutions to nontrivial problems whose solutions are known.

Item (6) is checked by computing the Gram matrix of the matrix whose columns are the computed eigenvectors. The (i,j) element of the Gram matrix may be thought of as the cosine of the angle between eigenvectors i and j. This test measures the orthogonality of the eigenvectors but not their quality.

Item (7) is useful for checking the scale independence of the routine and offers a further check on the error bounds.

Items (8) and (9) are, of course, present in all tests and may be examined further by resolution of matrices whose elements are numbers chosen from a sequence of random numbers.

6.3 Normal Cases Tested

It is easy to construct small matrices with known eigensystems using Test (4) of Section 6.1. Such matrices usually present no difficulty and do not constitute a significant test. It is relatively easy to construct matrices whose elements are pseudo-random numbers and this was done to test in the sense of Items (8) and (9). It is extremely unlikely that a matrix of random numbers would exhibit clustered or multiple eigenvalues or any other difficulties.

6.4 Difficult Cases Tested

Possible difficulties arise with closely spaced eigenvalues and eigenvalues of multiplicity greater than one. In the latter case an eigenvalue admits linearly independent but nonorthogonal eigenvectors. For example, the matrix

7]	2	0
2	4	0
0	0	3

has eigenvalues 8, 3, and 3. The vectors $(-1,2,-1)^{T}$ and $(-2,4,3)^{T}$ are a pair of linearly independent nonorthogonal eigenvectors corresponding to eigenvalue 3. The eigenvalue 3 does, however, admit a pair of orthogonal eigenvectors. In fact, infinitely many such pairs exist.

A difficulty, in some methods, occurs when the largest and smallest eigenvalues are equal in absolute value. This situation is no problem to the methods used in SEVER and is not considered a difficult case for this routine.

The example of Rosser et al¹⁰ is about as pathological as an eight by eight with small integer elements can get:

	611	196	-192	407	-8	-52	-49	29
	196	899	113	-192	-71	-43	-8	-44
	-192	113	899	196	61	49	8	52
$R_8 =$	407	-192	196	611	8	44	59	-23
	-8	-71	61	8	411	-599	208	208
	-52	-43	49	44	-599	411	208	208
	-49	-8	8	59	208	208	99	-911
	29	-44	52	-23	208	208	-911	99

R₈ has eigenvalues:

 $10 \sqrt{10405} = 1020.0490184299968238$ 1020 510+100 $\sqrt{26} = 1019.9019513592784830$ 1000 1000 510-100 $\sqrt{26} = 0.0980486407215169971776$ -10 $\sqrt{10405} = -1020.0490184299968238$

See Appendix B for machine-dependent results of SEVER with Rg.

A large class of useful test matrices may be constructed using the Kronecker product $A \otimes B$. Let A be mbym and B be nbyn. Then A (x) B is the nm bynm matrix:

 $A \otimes B = \begin{bmatrix} a_{11} & B & a_{12} & B & \dots & a_{1m} & B \\ a_{21} & B & a_{22} & B & \dots & a_{2m} & B \\ \vdots & & & & & \\ a_{m1} & B & a_{m2} & B & \dots & a_{mm} & B \end{bmatrix}.$ (23)

The eigenvalues of A \bigotimes B are the nm products of an eigenvalue of A times one of B. Let x and y be eigenvectors of A and B with eigenvalues α and β respectively, then x \bigotimes y is an eigenvector of A \bigotimes B corresponding to $\alpha\beta$ where x \bigotimes y is the mn component vector:

$$(x_1y_1, x_1y_2, \dots, x_1y_n, x_2y_1, \dots, x_2y_n, \dots, x_my_1, \dots, x_my_n)^T$$

For details and proofs see Reference 6 or Reference 2.

A 32 x 32 test matrix $A(A = B \otimes R_8)$ was constructed where

	15/16	5/8	5/16	-1/8]	
B =	5/8	15/16	1/8	5/16	
-	5/16	1/8	15/16	5/8	(24)
	[-1/8	5/16	5/8	15/16	

The eigenvalues of B are 2, 1.125, 0.5, and 0.125 exactly.

The matrix $A = B \bigotimes R_8$ is large enough to be nontrivial, is singular (in fact, rank (A) = 28), has multiple and clustered eigenvalues, and its nonzero eigenvalues span five orders of magnitude.

It is thought that matrices A, A + I, α A, and α A + I where $\alpha = 2^{-11}$ form a fairly significant test collection. Furthermore, each of these matrices admits an exact machine representation so that errors in the computed eigensystem are totally due to errors in the diagonalization. See Appendix B for machine-dependent results of SEVER with these matrices.

A nontrivial test matrix with predetermined eigenvalues d_1 , ..., d_n can be constructed as the product $U^T D U$ where U is a nontrivial orthogonal matrix and D = diag (d_1, \ldots, d_n) . An extremely convenient choice for U is $1/\sqrt{n}$ H_n where H_n is an n x n symmetric Hadamard matrix of plus ones and minus ones and n is a power of two. A Hadamard matrix is one in which any two rows (or columns) agree in exactly half their places and disagree in half.⁵ H_n for n = 2^k can be constructed as the k-fold Kronecker product of the matrix

27

 $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

with itself.⁷

C

С

The product $P = 1/n H_n DH_n$, called a Hadamard product, has eigenvalues d_1, \ldots, d_n and the columns (or rows) of $1/\sqrt{n} H_n$ form an orthogonal set of eigenvectors. Furthermore, if n is a power of two then each element of p is exactly representable in a binary computer for a large class of D.

It is thought the Hadamard products $1/8 H_8 D_8 H_8$ and $1/16 H_{16} D_{16} H_{16}$ form a significant pair of tests where D_8 has diagonal elements 1.0 and 1.0 + 2^{-k} for k = 38 to 44 and D_{16} has diagonal elements 1.0 and 1.0 + 2^{-k} for k = 24 to 38.

An example which further illustrates the difficulty in distinguishing between multiple and clustered eigenvalues is W_{21}^+ , see Reference 11, p. 309. W_{21}^+ is a tridiagonal matrix whose main diagonal is 10, 9, 8, ..., 1, 0, 1, ..., 8, 9, 10, and whose sub and super diagonals are all 1's. W_{21}^+ has pairs of extremely clustered eigenvalues. In fact the pair of largest eigenvalues agrees to 15 decimal places. See Appendix B for machine-dependent results of calculations with this matrix.

An example which illustrates the sharpness of the error bounds is W_{21}^- , again Reference 11, p. 309. W_{21}^- is identical with W_{21}^+ except the elements on the lower half of the main diagonal of W_{21}^- are the negatives of those on the lower half of the main diagonal of W_{21}^+ . W_{21}^- is singular and its nonzero eigenvalues occur in pairs differing only in sign.

6.5 Range, Error, and Fault Checks Tested

Both of the diagnostics in SEVER were checked. The diagnostics for the consistency of the input dimensions were checked by calling the routine with faulty parameters. The author was able to find no matrix with an eigenvalue which required more than thirty QR iterations. However, the viability of the related error check was tested by arbitrary lowering the limit on QR iterations to 5 in order to simulate an occurence of the error condition.

7. Remarks

Suppose C = A + iB is an n x n complex Hermitian matrix. Equating real and imaginary parts of

$$(A + iB)$$
 $(x + iy) = \lambda(x + iy)$

yields the 2n x 2n symmetric problem $DZ = \lambda Z$ where, in blocks,

$$D = \begin{pmatrix} A & -B \\ B & A \end{pmatrix} \quad \text{and} \quad Z = \begin{pmatrix} x \\ y \end{pmatrix} .$$

Each eigenvalue of C occurs as an eigenvalue of D of multiplicity two. The first n components of an eigenvector of D from the real part of an eigenvector of C and the remaining n components form the imaginary part. That is, let x be a 2n component eigenvector of D corresponding to eigenvalue λ and let the first n components of x be an n vector x_1 and the remaining n components be an n vector x_2 . Then $x_1 + ix_2$ is an eigenvector of C corresponding to eigenvalue λ . Furthermore, the eigenvectors of C computed in this way are of length one and those corresponding to distinct eigenvalues are orthogonal.

There will be two real orthogonal eigenvectors of D corresponding to each one of C. However, when these two real 2n component vectors are each converted to n component complex eigenvectors of C it is easily seen that one is a scalar multiple of the other and that the scalar is a complex number of absolute value one.

In case D has some eigenvalue of multiplicity 2k, k > 1, care must be used in choosing eigenvectors of C in order to guarantee orthogonality.

8. Certification

This routine was subjected to a wide variety of tests. The performance of the routine throughout the tests was checked carefully. The nature of the tests, the reliability of the routine, the error analyses conducted, and the observed variation in accuracy are reported in this document. While it is believed that the facts recorded and the judgments expressed regarding accuracy and reliability are strong indications of the general quality and validity of the routine, the tests should not be considered to be exhaustive. The use of this routine outside of the stated range of application or in violation of stated restrictions may produce unspecified results. The statements made in this document are intended to apply only to those versions of the indicated routine which are released by the Sandia Laboratories Mathematical Program Library project.

The author wrote SEVER and converted to FORTRAN the ALGOL routine in Reference 8 for tridiagonalization; converted the ALGOL routine in Reference 3 for eigenvalues and eigenvectors; added the Rayleigh quotient correction and error bound calculation; and performed the tests described above.

REFERENCES

- Bailey, C. B., <u>A Guide to the Sandia Mathematical Program Library</u>, SC-M-69-337, Sandia Laboratories, Albuquerque, New Mexico, January 1970.
- 2. Bourbaki, N., Algebre Multilinéaire, Hermann, Paris, p. 16 (1948).
- Bowdler, H., Martin, R. S., Rensch, C. R., and Wilkinson, J. H., "The QR and QL Algorithms for Symmetric Matrices," Numerische Mathematik <u>11</u>, 181-195 (1968).
- 4. Francis, J. G. F., "The QR Transformation, Parts I and II," Computer Journal 4, 265-271, 332-345 (1961, 1962).
- Golomb, S. W., and Baumert, L. D., "The Search for Hadamard Matrices," <u>The American Mathematical Monthly</u>, 70, 12-17 (1963).
- Halmos, P. R., Finite Dimensional Vector Spaces, Princeton, N.J. p. 96 (1958).
- 7. Hanson, R. J., "Certifying Linear Equation Solvers," <u>SIGNUM News-</u> <u>letter</u>, 4, 21-29 (1969).
- 8. Martin, R. S., Reinsch, C., and Wilkinson, J. H., "Householder's Tridiagonalization of a Symmetric Matrix," Numerische Mathematik <u>11</u>, 181-195 (1968).
- 9. Ortega, J., "The Givens-Householder Method for Symmetric Matrices," Mathematical Methods for Digital Computers, Vol. 2, edited by A. Ralston and H. Wilf, New York (1967).
- Rosser, J. B., Lanczos, C., Hestenes, M. R., and Karush, W., "Separation of Close Eigenvalues of a Real Symmetric Matrix," Journal of Research of the National Bureau of Standards, <u>47</u>, No. 4, 291-297 (1951).
- 11. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford (1965).
- 12. Wilkinson, J. H., "Rigorous Error Bounds for Computed Eigensystems," Computer Journal 4, 230-241 (1961).

31-32

APPENDIX A

The SEVER Listing

The changes which may have to be made for use of SEVER on machines other than the CDC 6600 are the DATA statements in lines SEV 480 and SEV 490 and the octal constants in lines SEV 640 and SEV 2370. ERRCHK is called in SEV 530 and SEV 1580.

	SUBROUTIN	E SEVER(A, EV, VEC, ERVAL, DPA, N, NDIM, KER)	SEV	10
			SEV	20
	MATHEMATI	CAL COMPUTING SERVICES DIVISION OF DO	SEV	30
	SANDTA LA	BODATORIES	SEV	40
	P. O. BOX	5800	SEV	50
	AL BUQUERQI	UE. NEW ME. TOO 87115	SEV	60
			SEV	70
	WRITTEN B	Y WILLIAM R. GAVIN	SEV	80
	• *		SEV	100
	CONTROL DA	ATA 6600 VERSION	SEV	110
			SEV	120
	ABSTRACT		SEV	130
	THE		SEV	140
	INIS I	ROUTINE COMPUTES ALL THE EIGENVALUES OF A REAL SYMMETRIC	SEV	150
	MAIRI)	AND AN EIGENVECTOR OF LENGTH ONE CORRESPONDING TO EACH	SEV	160
		VALUE. THE COMPUTED EIGENVALUES ARE SUBJECTED TO A	SEV	170
	FRRORS	S OF THE COMPUTED ELGENEVISTEM ARE CALCULATED	SEV	180
		O OF THE COMPOTED EIGENSTSTEM ARE CALCULATED.	SEV	190
	DESCRIPTIC	ON OF PARAMETERS	SEV	200
			SEV	210
	Α	THE SYMMETRIC MATRIX WHOSE EIGENSYSTEM IS TO BE COMPUTER	SEV	220
	EV	CONTAINS THE EIGENVALUES OF A IN NON-INCREASING	SEV	240
		ALGEBRAIC ORDER	SEV	250
	VEC	CONTAINS THE EIGENVECTORS. COLUMN J OF VEC CONTAINS THE	SEV	260
		EIGENVECTOR CORRESPONDING TO THE EIGENVALUE IN EV(J).	SEV	270
		THE EIGENVECTOR IS OF LENGTH UNITY.	SEV	280
	ERVAL	CONTAINS UPPER BOUNDS ON THE ABSOLUTE ERRORS OF THE	SEV	290
	DD A	COMPUTED FIGENVALUES	SEV	300
	DEA	COL 1 CONTAINS BAY FICH CODDECTED FICTURE	SEV	310
		COL. 2 CONTAINS THE LENGTHS OF THE RECIDUAL VECTORS	SEV	320
		COL 3 CONTAINS HPPER BOUNDS ON THE RESIDUAL VECTORS	SEV	330
		OF THE COMPUTED EIGENVECTORS AS MEASURED IN	SEV	340
		THE TWO NORM	SEV	360
	N	ORDER OF THE MATRIX WHOSE EIGENSYSTEM IS COMPUTED	SEV	370
	NDIM	DIMENSION OF ARRAYS PASSED INTO SUBROUTINE	SEV	380
	KER	OUTPUT ERROR CODE	SEV	390
		1 NORMAL (NO ERROR)	SEV	400
		2 N LESS THAN 3 OR GREATER THAN NDIM	SEV	410
		3 MORE THAN 30 GR ITERATIONS REQUIRED	SEV	420
			SEV	430
-	- DIMENCION	AVANTA NO - > EVVANDINA VECKANDIN VOIDEN EDVANDE	SEV	440
	DIMENSION	ACHULMSHUS, JEV (NUIMISVEC (NUIMSNDIM)SERVAL (NDIM)	SEV	450
	DUBLE DE	CISION DDA.DS.DD.DTV	SEV	460
	DATA (MESG=	CISION DEASUSSUESUESUES 2 ASH INDUS DIMENSIONS ARE INCONCISIONS	SEV	470
	DATA (MESG2	= 3 .43H NO CONVERGENCE IN 30 OR ITERATIONS	SEV	480
	KFR=1	C 2 2 2 2 2 CONTRACT IN 20 WALLENALDING	SEV	470
	IF(N.LE	•2•CR• N.GT.NDIM) KER=2	SEV	510
	IF (KER.EQ.	1) GOTO 1	SEV	520
	CALL ERRCH	K(43,MESG)	SEV	530
	RETURN		SEV	540

С		SEV	550	
С	COPY A INTO VECTOR ARRAY	SEV	560	
C		SEV	570	
	1 DO 2 I=1,N	SEV	580	
	DO 2 J=1,N	SEV	590	
	2 VEC(I,J)=A(I,J)	SEV	600	
	NM1 = N - 1	SEV	610	
	NM2=N-2	SFV	620	
C**	****	SEV	630	
	EPS=00061400000000000000	SEV	640	
c	EPS IS THE QUOTIENT OF THE SMALLEST POSITIVE FLOATING POINT	SEV	650	
č	NUMBER AND THE SMALLEST POSITIVE FLOATING POINT NUMBER WHICH	SEV	660	
è	WHEN ADDED TO 1.0 YIELDS A SUM NOT 1.0 . THIS IS A MACHINE	SEV	670	
è	DEPENDENT CONSTANT AND MUST BE CHANGED FOR USE OF THIS	SEV	680	
è	BOUTINE ON COMPLETES OTHER THAN THE CDC 6600.	SEV	690	
~**	Red The on Composers office that the coe boood	SEV	700	
C.,		SEV	710	
•	NP Z=N+2	SE V CEV	720	
C		SEV	720	
C A	BEGIN TRIDIAGONALIZATION	SEV	7.0	
Ċ		SEV	740	
C	THE TRIDUCCULULIATION IS A CORTRAN VERSION OF THE ALCOL	SEV	750	
C	THE INIDIAGONALIZATION IS A FURTHAN VERSION OF THE ALGOL	SEV	700	
C	ROUTINE OF MARTIN, REINSCH, AND WILKINSON. NUMER MAIH II,	SEV	- 7 70	
C	181-195(1968).	SEV	780	
C		SEV	790	
	DO 15 IB=2,N	SEV	800	
	I=NP2-IB	SEV	810	
	L=I-2	SEV	820	
	FACT=VEC(I,I-1)	SEV	830	
	GSTO=0.0	SEV	840	
	IF(L+FQ+0) GOTO 4	SEV	850	
	DO 3 K=1+L	SEV	860	
	3 GSTO=GSTO+VEC(I,K)**2	SEV	870	
	4 HOLD=GSTO+FACT*FACT	SEV	880	
c		SEV	890	
č	OMIT THIS TRANSFORMATION IF GSTO IS TOO SMALL TO MAKE	SEV	900	
Ċ	IT ORTHOGONAL	SEV	910	
Č		SEV	920	
•	IF(GSTO.GT.EPS) GOTO 5	SEV	930	
	FRVAL(I) = FACT	SEV	940	
		SEV	950	
	6010 14	SEV	960	
		SEV	970	
		SEV	980	
		SEV	990	
		SEV	1000	
		SEV	1010	
		SEV	1020	
		SEV	1030	
	VEL(1),-1/-FAC(-03)0	SEV	1040	
		SEV	1050	
		SEV	1060	
		SEV	1070	
	GSTU=U.U	SEV	1080	
	DO 6 K=1+J	ar in V	1000	

II

	£	CSTO=GSTO+VEC(1.K)*VEC(1.K)		SEV 1090
	0	101= 1+1	. •	SEV 1100
		IF(JP1.GT.L) GOTO 8		SEV 1110
		DO 7 K=JP1		SEV 1120
	7	GSTO=GSTO+VEC(K,J)*VEC(I,K)		SEV 1130
	8	ERVAL(J)=GSTO/HOLD		SEV 1140
		FACT=FACT+GSTO*VEC(J,I)	•	SEV 1150
	9	CONTINUE		SEV 1160
	10	HH=FACT/(HOLD+HOLD)		SEV 1170
		DO 13 J=1 + L		SEV 1100
		FACT=VFC(1)		SEV 1200
				SEV 1210
		PO = 12 K = 1 J		SEV 1220
	12	VEC(J,K)=VEC(J,K)-FACT*ERVAL(K)-GSTO*VEC(I,K)		SEV 1230
	13	CONTINUE		SEV 1240
	14	EV(I)=HOLD		SEV 1250
	15	CONTINUE		SEV 1260
		EV (1) = 0.0	•	SEV 1270
		ERVAL(1)=0.0		SEV 1280
ç		ACCUMULATE TRANSFORMATION MATRIX		SEV 1300
C A		ACCUMULATE TRANSFORMATION MATRIX		SEV 1310
Ċ		FV(1) = VFC(1, 1)		SEV 1320
		VFC(1+1)=1=0		SEV 1330
		DO 25 I = 2 N		SEV 1340
		L=[-]		SEV 1350
		IF(EV(1).EQ.0.0) GOTO 23		SEV 1360
		DO 22 J=1,L		SEV 1370
		GSTO=0.0		SEV 1300
				SEV 1400
	19	GSTO=GSTO+VEC(T)K)*VEC(K)J)		SEV 1410
	21	$VEC(K \bullet I) = VEC(K \bullet I) = GSTO*VEC(K \bullet I)$		SEV 1420
	21			SEV 1430
	22	$FV(I) = VFC(I \cdot I)$		SEV 1440
	-	VEC(I,I)=1.0		SEV 1450
		DO 24 J=1,L		SEV 1460
		VEC(1,J)=0.0		SEV 1470
	24	VEC(J,I)=0.0		SEV 1400
	25	CONTINUE		SEV 1490
C-				SEV 1510
C		THE TRIDIAGONALIZATION IS NOW COMPLETE		SEV 1520
Ċ		OFF DIAGONAL ELEMENTS ARE IN ERVAL		SEV 1530
ç		COMPUTE THE EIGENVALUES AND EIGENVECTORS (OF THE TRIDIAGONAL	SEV 1540
È		MATRIX		SEV 1550
č-		•••		SEV 1560
-		CALL QRVFC(EV, ERVAL, VEC, N, NDIM, KER)		SEV 15/0
		IF(KER.NE.1) CALL ERRCHK(43,MESG2)		SEV 1500
c -				SEV 1600
C		COMPUTE RAYLEIGH CORRECTED EIGENVALUES		SEV 1610
- C				SEV 1620

		DO 45 J=1.N		SEV 1630	
		DS=0.0D+00		SEV 1640	
		DO 43 K=1.N		SEV 1650	
		DP=DBLE(A(J,K))*DBLE(VEC(K,IV))		SEV 1660	
	43	DS=DS+DP		SEV 1670	
		DS=DS-DBLE(EV(IV))*DBLE(VEC(J,IV))		SEV 1680	
	45			SEV 1690	
		DS=0.0D+00		SEV 1700	
		DP=0.0D+00		SEV 1710	
		DO 47 K=1.N		SEV 1720	1
		DP = DP + DPA(K, 3) * * 2		SEV 1730	
	4 /	DS=DS+DBLE(VEC(K,IV))*DPA(K,3)		SEV 1740	
		PPA(1V,2) = DSQRT(DP)	•	SEV 1750	
		DPA(IV,1)=DBLE(EV(IV))+DS		SEV 1760	
		$EV(IV) = DPA(IV \cdot I)$		SEV 1770	
_	49	CONTINUE		SEV 1780	
(-				SEV 1790	
ć		A TRUE EIGENVALUE IS IN THE INTERVAL		SEV 1800	
C		* UPA(IV,1)-UPA(IV,2) , UPA(IV,1)+DPA(IV,2) *		SEV 1810	
<u> </u>				SEV 1820	
č		COMPUTE OPPER BOUNDS ON THE ABSOLUTE ERRORS IN THE		SEV 1830	
Ċ		COMPUTED EIGENSTSTEM		SEV 1840	
(-				SEV 1850	
		US = UPA(1,1) - UPA(1,2) - DPA(2,1) - DPA(2,2)		SEV 1860	
		FRUPALINE 2 0		SEV 1870	
		DRA(1,2)=DRA(1,2)		SEV 1880	
		EPVAL (0)1 0		SEV 1890	
				SEV 1900	
			•	SEV 1910	
				SEV 1920	
	51	DPA(1,3) = DPA(1,2) / DS		SEV 1930	
	1	FRVAL(1) = DPA(1,3) * DPA(1,2)		SEV 1940	
		NUP=2		SEV 1950	
	52	IF(NUP-GT-NM1) GOTO 57		SEV 1960	
	26	DO 54 K=NUP.NM1		SEV 1970	
		DP = DPA(K-1, 1) - DPA(K, 1) - DPA(K-1, 2) - DPA(K, 2)		SEV 1980	
		DS=DPA(-K+1) - DPA(K+2) - DPA(K+1+1) - DPA(K+1+2)		SEV 1990	
		IF(DS.IT.DP) DP=DS		SEV 2000	
		IF(DPA(K+2)+IT+1+0D+01*DP) = GOTO 53		SEV 2010	
		DPA(K,3) = DPA(K,2)		SEV 2020	
		FRVAL(K) = -1.0		SEV 2030	
		6010 54		SEV 2040	
	53	DPA(K,3) = DPA(K,2)/DP		SEV 2050	
		ERVAL(K) = DPA(K,3) * DPA(K,2)		SEV 2000	
	54	CONTINUE		SEV 2080	
	57	CONTINUE		SEV 2090	
		DS = DPA(NM1,1) - DPA(NM1,2) - DPA(N,1) - DPA(N,2)		SEV 2100	
		IF(DPA(N,2).LT.1.0D+01*DS)GOTO 56		SEV 2110	
		FRVAL(N) = -1.0		SEV 2120	
		DPA(N,3) = DPA(N,2)		SFV 2130	
		RETURN		SEV 2140	
	56	DPA(N,3)=DPA(N,2)/DS		SEV 2150	
		ERVAL(N) = DPA(1,2) * DPA(N,3)		SEV 2160	
		RETURN		SEV 2170	
		END		SEV 2180	

D

SUBROUTINE QRVEC(DG, EG, VEC, N, NDIM, KER) SEV 2190 c-SEV 2200 С QRVEC COMPUTES EIGENVALUES AND EIGENVECTORS OF A SYMMETRIC SEV 2210 C TRIDIAGONAL MATRIX SEV 2220 C C SEV 2230 DG ARRAY OF DIAGONAL FLEMENTS SEV 2240 c c SEV 2250 ARRAY OF SUB(SUPER) DIAGONAL ELEMENTS EC SEV 2260 C SFV 2270 Ċ VECTOR ARRAY. THE VECTORS ARE TRANSFORMED INTO VECTORS VEC SEV 2280 OF THE ORIGINAL MATRIX AS THEY ARE COMPUTED. С SEV 2290 (-----SEV 2300 C-----SEV 2310 THIS SUBROUTINE IS A FORTRAN VERSION OF THE ALGOL ROUTINE C SEV 2320 OF BOWDLER, MARTIN, REINSCH, AND WILKINSON. NUMER. MATH. 11, SEV 2330 Ċ C 293 - 306(1968)SEV 2340 C-SEV 2350 DIMENSION DG(NDIM), EG(NDIM), VEC(NDIM, NDIM) SEV 2360 FPS=016414000000000000000 SEV 2370 C***** SEV 2380 C C EPS IS THE SMALLEST POSITIVE FLOATING POINT NUMBER WHICH WHEN SEV 2390 ADDED TO 1.0 YIELDS A FLOATING POINT SUM NOT 1.0 . THIS IS A SEV 2400 С MACHINE DEPENDENT CONSTANT AND MUST BE CHANGED FOR USE OF SEV 2410 C THIS PROGRAM ON COMPUTERS OTHER THAN THE CDC 6600. SEV 2420 C***** SEV 2430 NM1 = N - 1SEV 2440 DO 1 1=2,N SEV 2450 1 = FG(I-1) = FG(I)SEV 2460 FG(N)=0.0 SEV 2470 B=0.0 SEV 2480 F=0.0 SFV 2490 c c SEV 2500 DIAGONALIZATION LOOP. SEV 2510 C SEV 2520 DO 14 L=1,N SEV 2530 J=0 SEV 2540 H=EPS*(ABS(DG(L))+ABS(EG(L))) SEV 2550 IF(B.LT.H) B=H SEV 2560 C SEV 2570 С LOOK FOR SMALL SUB-DIAGONAL ELEMENT SEV 2580 C SEV 2590 DO 2 M=L+N SEV 2600 KM=M SEV 2610 IF(ABS(EG(M)).LT.B) GOTO 3 SEV 2620 CONTINUE SEV 2630 3 IF(KM.EG.L) GOTO 13 SEV 2640 C SEV 2650 C CHECK ITERATION COUNT SEV 2660 C SEV 2670 4 IF(J.GT.30) GOTO 18 SEV 2680 J=J+1 SEV 2690 SEV 2700 FORM THE SHIFT FOR THIS ITERATION C SEV 2710 SFV 2720

39

j.

$P=(P_{C}(1+1))=P_{C}(1+1) + (I \in C(1+1)) + (C \in C(1+1))$	
	SEV 2730
$R = SUR\{(P = P + 1 + 0)\}$	SEV 2740
5 DENOM=D_P	SEV 2750
GOTO 7	SEV 2760
6 DENOM=P+R	SEV 2770
	SEV 2780
	SEV 2790
8 DG(I)=DG(I)=H	SEV 2800
F=F+H	SEV 2810
	SEV 2820
ONE OF TRANSFORMATION	SEV 2830
	SEV 2840
P=DG(KM)	SEV 2850
C=1.0	SEV 2000
S=0.0	SEV 2880
KM1=KM-1	SEV 2890
KL=KM1+L	SEV 2000
DO 12 IX=L,KM1	SEV 2910
I=KL-IX	SEV 2920
G=C*FG(I)	SEV 2930
H=C*P	SEV 2940
IF(ABS(P)+LT+ABS(EG(I)))GOTO 9	SEV 2950
C=EG(I)/P	SEV 2960
R=SQRT(C*C+1.0)	SEV 2970
EG(I+1)=S*P*R	SEV 2980
S=C/R	SEV 2990
C=1.0/R	SEV 3000
GOTO 10	SEV 3010
9 C=P/EG(I)	SEV 3020
R=SORT(C*C+1.0)	SEV 3030
FG(I+1)=S*EG(I)*R	SEV 3040
S=1.0/R	SEV 3050
C=C*S	SEV 3060
10 P=C*DG(I)-S*G	SEV 3070
DG(I+1)=H+S*(C*G+S*D G(I))	SEV 3080
	SEV 3090
END OF QL STEP FORM THE VECTOR	SEV 3100
	SEV 3110
DO 11 K=1,N	SEV 3120
H=VEC(K, 1+1)	SEV 3130
	SEV 3140
	SEV 3150
	SEV 3160
	SEV 3170
FUL)=5*P	55V 3180
15(1/=(+P) 15(ADC/56(1)) CT D) COTO 4	SEV 3190
IF(ADS(EU(E))+0)+N) 0010 4	SEV 3210
AN ETGENVALUE HAS BEEN FOUND THE SHIFT	SEV 3230
AN EIGENVALUE HAS DEEN FOUND' UNDU THE SHIFT	SEV 3220
13 DG/()=DG/()+F	JEV 3230 SEV 3240
	CEV 3250
Ⅰ→ アロス11/3行ビー	SEV 3250
	JEV 5200

·

)

с		END OF DIAGONALIZATION LOOP	SEV 2270
С			SEV 3270
С		SORT EIGENVALUES IN DESCENDING ORDER AND PLACE VECTORS	SEV 3280
c		ACCORDINGLY	SEV 3290
ĉ			SEV 3300
••			SEV 3310
			SEV 3320
			SEV 3330
			SEV 3340
			SEV 3350
			SEV 3360
			SEV 3370
			SEV 3380
			SEV 3390
	15	CONTINUE	SEV 3400
		IF(IX-EO-J) GOTO 17	SEV 3410
		TP=DG(IX)	SEV 3420
		DG(IX) = DG(J)	SEV 3430
		DG(J)=TP	SEV 3440
C			SEV 3450
Ç		INTERCHANGE COLUMNS OF VECTOR MATRIX	SEV 3460
C			SEV 3470
		DO 16 L=1,N	SEV 3480
		TP=VEC(L,J)	SEV 3490
		VEC(L,J)=VEC(L,IX)	SEV 3500
	16	VEC(L,IX)=TP	SEV 3510
	17	CONTINUE	SEV 2520
		RETURN	SEV 3530
Ċ			SEV 35/0
. C		ERROR RETURN (MORE THAN 30 ITERATIONS)	SEV 2550
C			SEV 35/0
-	18	KFR=3	SEV 35360
		RETURN	SEV 35/0
		END	SEV 3580
			SEV 3590

 \bigcirc

APPENDIX B

Ę

Test Results of SEVER on the CDC 6600

T

APPENDIX B

Test Results of SEVER on the CDC 6600

The table of execution times for SEVER was constructed using matrices whose elements were taken from a sequence of random numbers uniformly distributed between -1 and +1. The sequence was computed using the CDC 6600 library function RANF. Two separate executions of each order from 10 through 100 in increments of 5 were done and the table reflects the average of these two times. One 150 x 150 randomly constructed matrix was resolved. In no case were any of the eigenvalues of the randomly constructed matrices clustered or multiple. Thus it was possible for SEVER to compute an error bound for each eigenvalue of each matrix.

Table of Execution Times in Seconds

<u>n</u>	<u>Time</u>	<u>n</u>	Time	<u>n</u>	Time
10	0.110	45	7.014	80	37.242
15	0.315	50	9.459	85	44.460
20	0.709	55	12.463	90	52.662
25	1.298	60	16.173	95	61.651
30	2.191	65	20.338	100	72.216
35	3.402	70	25.235	150	235.104
40	4.966	75	30.825		

For the larger values of n, the time in seconds is nearly kn^3 where k is approximately 7 x 10⁻⁵.

One 200 x 200 matrix was loaded to verify that SEVER was indeed capable of handling such a matrix on a CDC 6600 with 3 x 2^{15} available core locations. In this case the required arrays and subroutine SEVER as compiled by the FUN compiler required approximately 86,000 locations. Subroutine SEVER requires about 1200 decimal locations.

The examples which follow, with the exception of the last one, are as described in Section 6.4. In all examples except the four 32 x 32 Kronecker products and the 16 x 16 Hadamard product, the upper triangle of the test matrix is displayed. In all cases the single precision eigenvalues, eigenvalue errors, and residual lengths are displayed followed by the double precision eigenvalues with 28 significant figures printed out. The eigenvectors and Gram matrices are displayed where space allows. Only the first eight components of the eighth, sixteenth, twenty-fourth, and thirty-second eigenvectors of the Kronecker products are displayed. These components constitute all of the distinct elements of the eigenvectors of these matrices. Only the first eight components of the first eight eigenvectors of the 16 x 16 Hadamard product are displayed.

The Hadamard products H_{16} and H_8 illustrate the inevitable deterioration in the quality of the computed eigenvectors in the case of extremely clustered eigenvalues. The computed eigensystems of these matrices also point out the inconclusiveness of small residual vectors as measures of the quality of computed eigenvectors. The computed eigenvalues of both matrices are correct to at least the first 48 bits of their floating point representations.

In cases where the exact eigenvalues and eigenvector components are known the decimal position of the first significant digit of the actual absolute error is underlined. The reader can compare this error with the computed error bound.

The last example is Rosser's matrix, R8, with the last two bits of each element randomly perturbed. This example is meant to show that the error induced by inexact knowledge of the input matrix can be greater than the error induced by inexact diagonalization.

 Θ_{0}

:

4

THE FACTOR B . FIRST FACTOR OF KRONECKER PRODUCT SEC 6.4 EIGENVALUES 2.0, 1.125, 0.5, 0.125 EXACTLY

I J A(I,J) 1 1 9.375E-01 1 2 6.250E-01 1 3 3.125E-01 1 4 -1.250E-01 2 2 9.375E-01 2 3 1.250E-01 2 4 -3.125E-01 3 3 9.375E-01 3 4 -6.250E-01 4 4 9.375E-01

EIGENVALL 1 2.00000000000 3 5.000000000000	VALUE E ERROR E+00 8.63E-27 E-01 1.19E-27	VECTUR ERROR 9.930-14 5.640-14	LENGTH 8.690-14 2.110-14	. 2 4	E IGENVALUE 1 • 125000000000000000000000000000000000000	VALUE ERROR 0 9.89E-27 1 4.76E-29	VECTOR ERROR 1.260-13 1.130-14	RESIDUAL LENGTH 7.860-14 4.220-15
1 1.99999999999999999999	999999999 <u>4</u> D+00	2 1.124	9999999999999	9999	99999999920+00 3	4.99999999	999999999999	9999999850-01
4 1.25000000000000000000000000000000000000	0000000030-01							
EIGENVECTOR ND. 1 5000000000500000000	050000000	.500	0000000					
EIGENVECTOR NO. 2 .5000000000 .500000000	050000000	.500	00 00 00 00					
EIGENVECTOR NO. 3 .5000000000500000000	.50000000	00 .500	000000					
EIGENVECTOR NO. 4 .5000000000500000000	050000000	00500	000000					
GRAM MATRIX 1 1.0E+00 -8.0E-15 3.6 2 1.0E+00 3.6E-15 4.4 3 1.0E+00 3.6E-15 4 1.0E+00	E-15 -8.0E-15 E-15			•			•	

EIGEN SYSTEM CALCULATION TOOK .012 SECONDS

ROSSER.S MATRIX R8 SEC 6.4 SECOND FACTOR OF KRONECKER PRODUCT

I 1 1 2 4 5	J 1 8 - 4 7	A(I,J) 6.110E+02 2.900E+01 -4.400E+01 6.110E+02 2.080E+02	I 1 2 3 4 5	J 2 2 3 5 8	A(1,J) 1.960E+02 8.990E+02 8.990E+02 8.000E+00 2.080E+02	I 2 3 4 6	J 3 3 4 6 6	A(1,J) -1.920E+02 1.130E+02 1.960E+02 4.400E+01 4.110E+02	1 2 3 4 6	J 4 4 5 7 7	A(1,J) 4.070E+02 -1.920E+02 6.100E+01 5.900E+01 2.080E+02	I 1 2 3 4 6	J 5 5 6 8 8	A(1,J) -8.000E+00 -7.100E+01 4.960E+01 -2.300E+01 2.080E+02	1 1 2 3 5 7	J 6 6 7 5 7	A([,J) -5.200E+01 -4.300E+01 #.000E+00 4.110E+02 9.900E+01	1 2 3 5 7	J - 7 - 8 - 8 - 8	A(1,J) -4.900E+01 -8.000E+00 5.200E+01 -5.990E+02 -9.110E+02
8	8	9.900E+01	-	-		•	•	11102.02	U	•	210002402	0	0	2.080 2+02	1	1	A. 4005+01	1	8 -	-9.110E+02

والمشعنا أقطعه وأأنا

					166		1.115			VAL	JE		VECTOR	ł	RESIDU	AL			_					١	ALUE		v	ECTO)R	RESI	DUAL		
				200	100	N VA	2 00			CKKI	JK - 20		EKKUK		LENG	н	_		Ł	IGE	NVA	LUE		6	ERROR		E	RRUF	i i	LEP	ig th		
		1	1.0	200	490	104	500	+03	2	• 4 80	-20	1	.390-0	19	6.820-	11	2	1.	0200	0000	000	DOE	+03	1.	. 17E-	19	1.	550-	-09	7.58	0-11		
		2	1.0	1133	019	213	275	+03	2	• > 21	-20	2.	070-1	0	4.970-	11	4	1.	0000	000	000	DOE	+03	~1.	.00E+	00	4.	220-	-11	4.22	0-11		
		2	1.0	0000	000	000	OOF	+03	-1	• 0 Oł	+00	5.	-310-1	1	5.310-	11	6	9.	8046	640	721	52E-	-02	2.	89ĉ-	20	5.	4 30-	-10	5.32	0-11		
		7	1.4	605	091	390	1 3E	-23	2	• 9 98	-20	5.	•2D-1	0	5.410-	11	8 -	-1.	0200	490	184	30E	+03	5.	59E-	24	7.	4 OD -	-14	7.55	D-11		
. 1	L	1.020	0490	184	299	968	238	463	131	34D4	03	í	2 1.0	199	999999	99 999	9999	999	99 <u>3</u> 7	170	+03		3	1.0	01990	195	135	9278	84830	02 02	22800)+ 03	
4	•	1.000	0000	000	000	000	000	000	000	180+	03	5	5 1.0	000	000000	00000	0000	000	0000	25 D	+03		6	9.8	0486	4072	215	1699	71.77	5282	75490	0-02	
7	7	1.460	5091	390	127	535	513	943	692	220-	23	ŧ	3 -1.0	200	490184	29996	8238	346	3137	84 D	+03												
EIG8 •6324	ENVI 64 7	ECTOR 9338 <u>6</u>	NO.	1 • 31	622	396	6 87		•3	1622	396	687	.6	324	479338	ş -	.001	155	0080	18		. 00 1	550	08 00	29		003	1001	6049		• 00 3 1	.00160)46
FIGE	NV	ECTOR	NO.	2																													
.2236	506	79766	-	•44	721	359	553	•	4	6721	359	55 4	•2	236	0 67 97 7	<u>o</u>	• 4 4 1	721	3595	42		447	1213	1595	4 <u>2</u>	•2	2236	6067	9792	÷	• 2236	06797	92
EIGE •0623	ENV 320	ECTUR 66165	NO.	е оз	116	033	0 9 2		0	3116	033	067	•0	623	206615	ş -	.314	6 81	8788	20		314	6 88	788	90	•6	5293	3775	7750	-	. 6293	77577	50
E108																									-				-				
•094()82)	98680	NU.	•64	469	804	973		•14	9816	597	360	3	223	90248	, ד	. 383	822	2577	66 ·		449	041	445	68	•1	1919	9112	8883		2245	20722	84
EIGE •3730	ENV 025	ECTOR 99319	N0.	.5 •41	995	764	628		74	605	1984	638	2	0993	788231	6 – .	.246	333	3572	38		079	760	767	71	1	231	1667	8619		. 0398	80383	86
6106	-		-																														
.6293	577	5775 <u>6</u>	-	.31	468	878	878	-	•31	468	878	878.	6	2931	175775	<u>6</u> . –	.031	160	0330	80	•	031	160	3 30	80	•0	623	3206	6160.		0623	20661	60_
EIGE •0447	NVI 21	EC TOR 35955.	NO.	7 08.	944.	271	910	-	.08	3944	271	910_	0	4472	213595	5,	. 626	099	9033	70_		626	099	033	70_	3	130)495	1685	-	3130	49516	85.
																												-					
.0031	NVI 001	EC TOR 16048.	NO. -	8 00.	155	800	024.	-	.00	0155	008	024_	0	0310	01604	3	316	223	3966	91_	•	316	223	966	91_	6	324	479	3383_	. ~.	6324	47933	83_
	:0 AI	-																															
	1	.06+0	a 14	. SE	-15	- 3	76.	-14	4	76-	15	1.7	5-14			-0 06-	.14		or.	• •													•
2		06+0	0 _4		-15	-6	OC.	-16	_1	45-	12	2.0	6-16		E-12 ·	-7.7C-	10	-2.	6E-	10													
2	1	0E+0	т – т А – А	- 06	16	-0	26	-16	-11	26-	14	3 0	5-13	-1.44	C-14	3.35.	.13																
	1	. 0E+0		. OF	-15		- 4F-	-15	- 4	26-	15	7 1	5-15	0.																			
	1	06+0		06	-16	- 4	6 7 E '	-15	-0.	26-	15	1.1	C-12																				
2	1	06+0	0 _6	30.	-12		4 90'	-19	-1.	20-	13				1																		
7	1	0640	0 - 9 n - 9	10	-10		• 02.	-15													•												
1	1.	0610	∪ ∠ ∩	• 10	-14																												
0	- L (• U C TU																															

.

EIGEN SYSTEM CALCULATION TOOK .054 SECONDS

THE KRONECKER PRODUCT B X R8 SEC 6.4.

in the first in the state of the

٤

							VALUE	V	ECTO	R RESID	UAL					VALU	E	VECTOR	RESI	DUAL	
				EIG	ENVALUE		ERROR	E	RROR	LENG	TH		EIG	ENVALU	E	ERRO	R	ERROR	LEN	3 TH	
		1	2.0	140098	30000E	+03	1.056-1	/ 1.	040-0	08 1.020	-09	2	2.040000	000000	E+03	8.01E	-18 9	• 04D- 09	8. 86)-10	
		2	2.0	124803	JU2/19E	+03	2.84E-1	8 3.	810-0	09 7.460	-10	4	2.000000	000000	E+03	-1.00E	+00 8	.700-10	6.70	0-10	
		2	2.0	175000	JUUUUUUE	+03 -	-1.00E+0	0 1.	030-0	09 1.030	-09	6	1.147555	145734	E+03	5.52E	-18 1	• 000-09	5.510	0-10	
•			1.1	36000	JUUUUUUE	+03	5.30E-1	8 9.	800-0	09 5.41D	-10	8.	1.1473894	695279	E+03	2.35E	-18 4	.620-09	5.090	0-10	
			1.1	2 20000	JUUUUUE	+03 -	-1.00E+0	0 3.	950~1	10 3.950	-10	10	1.1250000	000000	E+03	-1.00E	+00 5	.120-10	5.120	0-10	
		11	2.1	002450	19212UE	+02	1.08E-1	8 8.	290-0	19 2.030	-10	12	5.1000000	000000	E+02	1.67E	-18 8	-240-09	2.020	0-10	
		13	2.0	00000	1201905	+02	1.296-1	y 3.	860-0	J9 1.89D	-10	14	5.0000000	000000	E+02	-1.00E	+00 1	.710-10	1.71	0-10	
		12	2.0	75000		+02 -	-1-002+0	0 1.	820-	10 1.820	-10	16	1.2750612	273037	E+02	4.67E	-19 ย	.730-09	5,350	0-11	
		11	1.4	60000	JOUGODE	+02	5.81E-1	9 9.	140-0	19 5.970	-11	18	1.2748774	439199	E+02	3.92E	-19 5	•65D-09	6.930	9-11	
		17	1.4	500000	500000E	+02 +	·1•00E+0	0 4.	320-1	4.320	-11	20	1.2500000	000000	E+02	-1.00E	+00 4	.620-11	4.621)-11	
		21	1	009120	3144305	-01	1.405-2	0 4.	120-1	0 3.540	-11	22	1.1030472	2081176	E-01	1.46E	-20 4	. 690-10	3.000)-11	
		23		1024320	J 300 / 0E	-02	2.355-2	0 8.	390-1	0 3.090	-11	24	1.2256080	000101	E-02	4.90E	-20 2	.010-09	2.470	0-11	
		22	2.2	10220	+ 9108 UE	-21 -	-1.00E+0	0 2.	900-1	1 2.900	-11	26	6.7998168	3222521	E-22	-1.00E	+00 2	-339-11	2.330	0-11	
		21	1.1	747224	38/3/6	-21 -	-1.00E+0	0 1.	110-1	1 1.770	-11	28	1.0472679	910160	-21	-1.00E	00 2	.690-11	2.890	9-11	
		29	-1-2	150612	13037E	+02	1-456-2	2 1.	070-1	1.360	-10	30 ·	-5.1002450	0921506	E+02	1.08E-	-21 1	•680-12	6.430	0-10	
		31	-1.1	47555	45734E	+03	1.816-2	1. 1.	690-1	2 1.080	-09	32 .	-2.0400980)368960E	E+03	5.22E-	-22 7	.65ù-13	6.830)-10	
	1 .	2.040	0980	368599	936476	92626	298D+03	2	2.0	1 399 999999	99 9 999 9	999	9999821890	C+03	3	2.03980	39027	18556966	0 056 61	683D+03	
	4	1.999	9999	999999	9999999	99999	3810+03	5	1.9	999999999	999999	999	9999991660)+03	6	1.1475	551457	33746420	-	536D+03	
	7	1.147	4999	999999	9999999	99997	7470+03	. 8	1.1	47389695	279188	293	3781768310	+03	9	1.12499	999999	99999999	999999	7760+03	
							•								•					1.00.03	
1	0	1.124	9999	999999	9999999	99999	6910+03	11	5.1	00245092	149984	119	2315530110	+02	12	5.10000	00000	00000000	000002	562D+02	
1	3	5.099	5097	567963	924150	1412]	8950+02	14	4.9	9999999999	999999	9999	9999991330	+02	15	4.99999	99999	999999999	999999	163D+02	
1	6	1.275	0612	730374	\$60298	07891	935D+02	17	1.2	749999999	9999999	9999	9999791510	+02	18	1.27487	774391	99098103	753547	7770+02	
1	9	1.250	0000	000000	000000	00000	359D+02	20	1.2	499999999	999999	9999	99999999 <u>7</u> 30	+02	21	1.96097	28144	30339943	546908	0910-01	
2	2	1.103	0472	081170	662182	44381	0830-01	23	4.9	02432036	07 5849	858;	501935500	-02	24	1.22560	80090	18962464	5 <u>9</u> 0062	071D-02	
2	5	2.510	5264	916800	262333	99059	3130-21	26	<u>6</u> .7	99816822	25 2 1 7 5	679	5433668770	-22	27	1.19452	24387	37278142	218712	682D-21	
2	B 1	1.047	2679	101604	319927	53048	8620-21	29	-1.2	75 06 12 7 3	037496	0298	807891 <u>3</u> 41D	+02	30 -	-	50921	49984119	231562	7150+02	
3	1 -	1.147	5551	457337	4642682	27102	Q84D+03	32	-2.0	40098036	859993	6476	692627 <u>2</u> 670	+03					-		

031	160	33080	NU.	• 01558	016543		01558016	53 <u>7</u>	.0	31 16 03 30	72 -	. 157	134439442	. 15	7344	39442	.31	66 887 887	1	31468878	871
510	EM 1/4		NO	14																	
•316	2239	96692	NU .	.15811	198345	•	15811198	346_	•3	16 22 39 66	92 -	.000	07750401]	-•00	0775	i04012_	.00	15500802	4_ •	00155008	024_
EIG 314	EN VI 6887	EC TOR 78863	NO.	24 • 15734	439434		15734439	9434	.3	146887886	62	.015	58016535	01	5580	16544	031	1603308	1.	03116033	07]
EIG •001	EN VI 5500	ECTOR 08024	ND.	32 • 00077	504012	, •	00077504	012_	•0	01 55 00 802	24_	•158	11198346_	.15	8111	98346_	316	52239669	1•:	31 622 3 96	691_
E1 (GEN	SYST	EM C	ALCULA	TION TO	ЮК	2.456 SE	CONDS	5												

PREVIOUS KRONECKER PRODUCT + IDENTITY

•				2.04 2.04 2.00 1.14 1.12 5.11 5.10 5.01 1.28 1.26	EIG 1098 0803 1000 8500 6000 0245 9509 0000 5000 0000	ENVAL 03686 90271 00000 00000 09215 75679 00000 00000 00000 00000	UE 0E+03 9E+03 0E+03 0E+03 0E+02 0E+02 0E+02 0E+02 0E+02 0E+02 0E+02		VALUE ERROR • 22E-1 • 27E-1 • 0CE+0 • 10E-1 • 00E+0 • 12E-1 • 01E-1 • 01E-1 • 01E-1 • 01E-1 • 00E+0	L8 9 L8 3 L8 4 L8 4 L8 4 L8 4 L8 4 L8 4 L9 3 L9 1 L9 1 L9 1 L9 1	VEC ERA 9-16 8-82 8-82 8-82 8-82 8-82 8-82 8-82 8-8	TOR IOR IO-09 ID-09 ID-10 ID-10 ID-09 ID-10 ID-10 ID-10 ID-10 ID-10 ID-10 ID-10 ID-10 ID-10 ID-09 ID-10 ID-09 ID-10 ID-09 ID-10 ID-09 ID-10 ID-09 ID-10 ID-08 ID-08 ID-11	RES LE 8.9 6.6 5.6 4.7 1.6 1.7 1.6 4.5	S 10UA ENGTH 980-1 570-1 570-1 520-1 760-1 190-1 560-1 720-1 530-1 530-1 590-1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 6 8 10 12 14 16 18 20	2.04 2.00 1.14 1.14 1.12 5.11 5.01 1.28 1.28 1.28	EIGE 10000 10000 15551 133896 50000 00000 00000 50612 48774 00000	NVAL 0000 4573 9527 0000 0000 7303 3919 0000	UE 00E+03 04E+03 04E+03 09E+03 00E+03 00E+03 00E+03 00E+03 00E+03 09E+03 09E+03	3 - 1. 3 - 1. 3 - 1. 3 - 1. 2 - 1. 2 - 1. 2 - 1. 2 - 1. 2 - 1. 2 - 1.	ALUE RROR 21E- 00E+ 02E- 23E- 00E+ 17E- 09E- 28E- 00E+	-18 -18 -18 -18 -18 -18 -18 -00 -18 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19	VEC ERR 9.15 8.29 6.54 4.50 4.60 6.91 1.51 9.12 5.17 4.18	TOR OR DD-10 D-10 D-09 D-09 D-09 D-09 D-10 D-09 D-09 D-09 D-09 D-09	RES LE 8.9 8.2 4.7 4.9 4.6 1.6 1.5 5.5 6.3 4.1	10 UAL NG TH 70-10 90-10 60-10 00-10 90-10 90-10 90-10 90-11 40-11 80-11	
		2		L.04 L.00 L.26 L.14	9024 0000 0000 5061 6555	32036 00000 00000 27303 14573	1E +00 0E +00 0E +00 7E +02 4E +03	1 -1 -1 2	37E-2 00E+0 00E+0 10E-2 32E-2	20 6 00 4 00 1 22 1	-53 -72 -28	b = 10 b = 10 b = 10 b = 11 b = 11 b = 12 b = 12	2.2 4.5 1.7 1.6 9.1	240-1 530-1 20-1 30-1 60-1	1 1 1 0 0	24 26 28 30 - 32 -	1.012 1.000 1.000 -5.090 -2.039	22560 0000 0000 02450 0980	2081 8009 0000 0000 9215 3686	2E+00 0E+00 0E+00 0E+00 0E+02 0E+03	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ $	12E- 33E- 00E+ 00E+ 23E- 40E-	20 20 00 22 22 22	4 • 2 7 1 • 8 8 2 • 2 4 2 • 2 1 1 • 3 7 6 • 1 7	D-10 D-09 D-11 D-11 D-12 D-13	2.6 2.3 2.2 2.2 5.2 5.5	20-11 00-11 40-11 10-11 50-10 10-10	
	1	2.04	109	9803	6859	99364	76926	2669	910+03	•	2	2.040	3 9 999	9999	99999	9999	999941	538D	+03	3	2.0	4080	3902	7185	569661	0056	25 9050+	03
	4	2.00	099	1999	9999	999999	99999	9950	06D+03		5	2.000	99.99	9999	9999	9999	999999	447D	+03	. 6	1.1	4855	51457	7337	464268	3271	02 3410+	03
	7	1.14	849	9999	9999	999999	99999	ទទន្ធខ	30+03		8	1.148	338 96	9527	9188	2933	378175	0320	+03	9	1.1	2599	99999	9999	999999	9999	- 997480+	03
1	0	1.12	599	9999	9999	99999	99999	9974	6D+03	1	1	5.110) 24 50	9214	9984	1192	231562	-	+02	12	5.1	1000	00000	000	00000	0000		0.2
,	2	5.10	0.57	1976	6 7 Q 6	207610	50141	•	110+03			E 0.00			0000					••						0000	120000	UZ .
•	2	2.10	1950	1712	0170	37241:	50141	1110	510+02	. 1	•	2.003	13333	3333	3333	9995	*****	4460	+02	15	5.0	0999	99999	9999	999999	9999	93110+	02
. 1	6	1.20	15 06	5127	3037	496029	98078	9079	70+02	: 1	7	1.284	9999	9999	99999	9999	9999 <u>7</u>	1960	+02	18	1.2	8487	74391	9909	981037	5353	1210+	02
1	9	1.2	1955	999	9999	999999	99999	9995	00+02	2	0	1.260	0000	0000	0000	0000	00000	3270	+02	21	1.1	9609	72814	430	339943	5495		00
2	2	1.1	030)472	0811	70662	8246	8625	570+00	2	3	1-049	0743	2036	0758		584185	27204	-00	24	1 0	1226	4 0.9 0.0				7	
	_							2		-	-			20.30	0120	470.	103103	2120	•00		1.0	1223	60800	14019	390240	4823	12080+	00
2	5	1.00	0000	0000	0000	00000	00000	6612	40+00) 2	6	1.000	00 00	0000	0000	0000	02193	0510	+00	27	1.0	0000	00000	0000	00000	0018	35120+	00
2	8	1.00	000	0000	0000	000000	00014	3911	30+00	2	9 -	1.265	06 1 2	7303	7496	0298	10789 <u>1</u>	06704	+02	30	-5.0	9024	50921	4998	341192	3156	44820+	02
3	1 -	1.14	655	514	5733	746426	58271	02 <u>2</u> 4	9D+03	3	2 -	2.039	09 80	3685	99936	6476	- 92627	360 D1	103								•	
EIG 031	ENV 160	ECTO 3307	IR N 19_		8 0155	801654	40_ ·	01	55801	6540	-	.031	1603	308L	-,	. 157	34439	439_	•	15734	4394	39	.31	4688	78878		.31468	878878_
EIG 316	EN V 22 3	ECTO 9669	ir n 1 <u>0</u>		16 1581	1 1 9 8 3 4	·2 ·	15	81119	8349		316	22 39	6699	٩	.000	77504	015		00077	5040	09	00	1550	08022	-	.00155	08026
EIG 314	EN V 6 8 8	ECTC 7886	R N 2	.0.	24 15734	443943	93 ·	-•15	73443	9432		•314	6887	8869	•	.015	58016	5 <u>2</u> 5	(01558	0165	54	03	1160	33086		.031150)3307L
EIG 001	EN V 550	EC T (0 8 0 2	R N 4_	0. 	32 0007	750401	2	00	07750	4012	- '	001	55 00	8024_	. - .	158	11198	346_	1	15811	1983	46_	•31	6223	96691	-	• 31 622 3	96691_
EI	GEN	SYS	TEM	CA	LCUL	TION	тоок	2.	434 S	ECON	DS																	

سدينو الماليكم

4

		1357911135 157912123257231	9.9 9.7 5.6 2.4 2.4 6.1 9.9 2.5 1.7 5.6 5.6	EIG 01416 159979 765625 003027 93164 90354 69994 441406 225585 103515 575062 393765 225843 332629 225885 03296	ENVALUE 195605E 993743E 993743E 000000E 343750E 048901E 998436E 25000E 525000E 570461E 542615E 013516E 013516E 095397E 122253E	-01 - -01 - -01 - -01 - -01 - -02 - -05 - -05 - -25 - -02	VALUE ERROR 5.14E-21 1.39E-21 1.00E+00 2.59E-21 1.00E+00 3.56E-22 1.00E+00 7.12E-24 1.00E+00 1.00E+00 1.00E+00 1.00E+00 7.08E-26	VE(ER) 3.8 5.0 9.8 8.2 3.8 8.8 9.7 2.1 4.1 8.3 1.4 8.3 1.4	CTOR ROR 4D-08 1D-09 2D-13 2D-13 9D-09 3D-13 9D-09 9D-14 4D-09 1D-14 2D-10 9D-10 1D-14 3D-15 7D-12	RESIDUA LENGTH 4-96D-1 3-664D-1 5-020-1 9-3D-1 9-23D-1 9-23D-1 9-23D-1 9-23D-1 2-91D-1 2-91D-1 2-91D-1 2-91D-1 2-91D-1 1-73D-1 1-51D-1 1-41D-1 8-63D-1 6-64D-1 5-25D-1	L 3 2 3 4 3 6 3 8 3 10 4 12 4 16 4 16 4 16 4 20 4 20 4 20 4 20 4 20 5 28 3 3 3 3 4 12 4 16 4 16 4 20 5 28 4 30 3 3 4 3 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	E 9.9609 9.7656 5.6024 5.6024 5.4931 2.4902 2.4414 6.2249 6.1035 5.3859 5.9844 3.3202 5.1136 -2.4903	IGENVAI 375000 250000 966100 887464 6406250 343750 0625001 851222 874960 1562500 1562500 726958 1410655 2305774 128425 5464891	LUE 00E-01 28E-01 50E-01 50E-01 53E-02 53E-02 53E-02 53E-02 84E-05 33E-06 40E-25 80E-25 01E-01	VALU ERRO 3.91E -1.00E 2.69E 1.15E -1.00E 2.02E 1.91E -1.00E 7.15E 2.42E -1.00E -1.00E 5.27E	E V R E -21 9. +00 4. -21 4. +00 2. -22 8. +00 8. -22 5. +00 2. -24 4. +00 1. +00 1. -25 7.	ECTOR RROR 04D-09 25D-13 00D-08 62D-09 50D-13 24D-09 33D-14 73D-09 65D-09 24D-14 85D-10 61D-09 14D-14 41D-14 65D-12	RESIDUAL LENGTH 4.330-13 4.250-13 2.490-13 2.500-13 2.500-13 9.870-14 8.330-14 2.610-14 3.380-14 2.260-14 1.460-14 1.140-14 1.140-14 1.410-14 3.320-13	
	_	· ·						1.0		J • 2 JU-1		- 7. 7014	1019500	0.75-01	2.550	-25 1.		3.330-13	
	1	9.961	416	95605	4377328	74151	8480-01	2	9.96	93749999	9999999	99999130	310-01	3	9.9599	7999374	29539355	5745 <u>1</u> 99390	-01
	4	9.765	6249	999999	99999999	99996	9760-01	5	9.76	562499999	9999999	99999959	30 D-01	6	5.6032	9661002	80587247	7417116040	-01
	7	5.603	0273	343749	9999999	999 <u>8</u> 8	998D-01	8	5.60	248874648	041158	87606290	59D-01	9	5.4931	64 062 4 9	999999999	99999 <u>8</u> 906D	-01
1	0	5.493	3164()62499 [.]	99999999	99998	4890-01	11	2.49	35404890	135943	321 85317	44 D- 01	12	2.4902	3437500	00000000	0000012510	-01
	2	2 / 00	0044	00425	730/030	-	2070-01	14	3 4 4	40424000	00000	A	77	16	3 44 14	042/000		-	A 1
I	3	2.403		998433	1 3048 30	201 J	2070-01	14	2.77	1 40 62 49 79	777777	44444443	110-01	15	2.4414	0024999	33333333	1444442410	-01
1	6	6.225	5885	122253	3585830	46347	340D-02	17	6.22	558593749	999999	99998981	990-02	18	6.2249	8749608	93462097	1341200070-	-02
1	9	6.103	5150	525000	000000	0000 <u>1</u>	754D-02	20	6.10	351562499	999999	999999998	69D-02	21	9.5750	62 570 4 6	06442556	500137164D·	-05
,	2	6 3 6 6			1 1 2 2 6 2 7	71202	0050-05	22	2 30	76664261	516106	27452114	940-05	74	6 9944	14 1045 2	70024601	21142/670	- 04
2	2	2.30:	9120	373004	123737	[1372	0050-05	£.3	6. 37.	010004201	210100	21422110	740-05		2.7044	1410023	19020391	511024510	.00
2	5	1.22	5843(013515	6378092	76884	4300-24	26	3.320	22 30 5774	032015	60270346	08 D- 25	27	5.8326	2909539	68659288	02308016D	-25
2	8	5.113	612	842580	2343396	14496	3960-25	29 -	-6.22	688512225	3398 58	30463444	370-02	30 -	-2.4903	5404890	13594332	185364820	-01
3	1 -	5.603	296	510028	0587247	41709	3940-01	32	-9.96	41 61 95 60	543773	28741565	76 D-01						
E1G 031	EN V 160	ECTOP 3308	(NO. 2	.0155	801654 <u>3</u>	, ≁•	01558016	53 <u>7</u>	.03	16033079	1	57344394	42	157344	43 94 4 2	.314	6887887]	3146	387 8877
EIG .316	EN V 223	ECTOP 9669	NO.	16 • 1581	1 198345	ی ایر ا	15811198	346_	.31	22 39 66 92	0	00775040	11	.00077	504012_	.001	55008024	. 00155	i 00802 4
EIG 314	EN V 666	ECTOF	L NO.	. 24 .1573	4439434		15734439	434	•314	68878869	•0	15580165	35	.015580	016544	031	1 603 3081	.03115	03307 <u>7</u>
EIG .001	EN V 550	ECTO 08024	NO.	32 • 0007	7504012	- •'	00077504	012_	.00	55008024	- •1	58111983	46_	158111	98346_	316	22396691	31 622	396691_
EI	GEN	SY 51	TEN C	ALCUL	ATION T	оок	2.462 SE	CONDS				-							

51

A

r -

PREVIOUS KRONECKER PRODUCT + IDENTITY

Real Contraction of the second second

					VALUE	VE	ECTOR	RESIDUAL					VALUE	VECTOR	RES	TOUAL	
			E	GENVALUE	ERROR	EF	RROR	LENGTH		EIGE	NVALUE		ERROR	ERROR	LE	live Tet	
		1	1.99614	+1619561E+OC	9.918-21	1.4	40-08	6.890-13	2	1.9960937	500 00E +	00	6.31E-2	1 1.150-0	8 5.4	43-13	
		3	1.99599	97999374E+00	2.916-21	5.5	510-09	5.260-13	4	1.9765625	00000E+	00 -	1.00E+0	0 6.000-1	3 6.0	10-13	
		5	1.97656	2500000E+00	-1.00E+00	6.2	270-13	6.270-13	6	1.5603296	61003E+	00	7.82E-2	1 1.700-0	8 4.5	90-13	
		7	1.56030)2734375E+00) 5. 34E-21	1.4	10-08	3.790-13	8	1.5602488	74648E+	00	2.26E-2	1 6.430-0	9 3.4	93-13	
		9	1.54931	6406250E+0C) -1.00E+00	3.3	80-13	3.380-13	10	1.5493164	06250E+	00 -	1.00£+0	0 4.420-1	3 4.4	20-13	
		11	1.24903	54 C4 89 0E +00	7.51E-21	2.5	60-08	3.000-13	12	1.2490234	37500E+	00	5.69F-2	1 2.180-0	a 2.6	10-13	
		13	1.24899)9459844E+OC	2.305-21	9.8	900-09	2.350-13	14	1.2441406	25000E+	00 -	1.00E+0	0 2.150-1	3 2.1	50-13	
		15	1.24414	06250002+00	-1.00E+00	3.0	10-13	3.010-13	16	1.0622588	51223E+	00	1. h4F-2	0 7.840-0	2 2 1	52-13	
		17	1.06225	5859375E+00	1.02E-20	5.8	34D-08	1.750-13	18	1-0622498	7496164	00	4 245-2	1 2 5 5 (1 = 0	2 2 7 7		
		19	1.06103	15156250E+00	-1.00E+00	1.1	90-13	1.190-13	20	1.0610351	562506+	00 -	1.005+0	1 2.000-0	a 1.9 X 9.0		
		21	1.00009	5750626E+00	4.36E-22	3.2	30-09	1.350-13	22	1.0000538	597276+	00	A. 34F-2	2 5 280-0	2 2 . U	10-13	
		23	1.00002	3937656E+00	1.37E-21	8.7	150-09	1.570-13	24	1.0000059	HAA 1 46 A	00	4 0/5-2	2 3.200-0	, 1.J	-07-13	
		25	1.00000	0000000E+00	-1.00E+00	1.0	10-13	1.010-13	26	1.00000000	000006+	00 -	1 00610	1 2.870-0	3 1.1	20-13	
		27	1.00000	000000F+00	-1.00F+00	2.0	20-13	2-020-13	28	1 00000000	0000000	00 -	1.00000	0 1.740-1	> 1.1	40-13	
		29	9. 37741	1487775E-01	1.156-25	1.3	60-12	8 4 50-14	20	7 5004/50	510000	00 -	1.000+0	0 2.140-1	3 2.1	40-13	
		31	4.39670	33899726-01	2.646-25	0 6	60-12	2 070-12	30	7.5090439	210335-	01	1.065-2	5 1.550-1	3 1.4	10-13	
			4157010		2.042.23	763	10-13	2.710-13	32 .	3.0203804	374265-	03	8.312-2	6 4.380-1	3 1.9	10-13	
	1	1.996	14161956	05437732874	1 <u>3</u> 256D+00	2	1.996	093749999	9999999	99999 <u>5</u> 71 D	+00	3 1	•995997	9993742953	935574	+ <u>5</u> 376D+0	0
	4	1.976	56249999	9999999999999	996080+00	5	1-976	562699999		000006600	• 00	<u>د</u> ۲	E4 0 3 3 0	(() 00000000			
						-					.00	0 1	. 200329	001 002 805 8	124 141	e384 \n+0	0
	7	1.560	30273437	499999999999	89346D+00	8	1.560	24 88 7464 8(0411586	1760Z3446D	+00	91	•549316	4062499999	} 999999	99 <u>8400+0</u>	0
	10	1.549	31640624	9999999999999	99 <u>7</u> 570+00	11	1.249	03 54 04 89 0 1	1359433	218510650	+00 1	2 1	.249023	4374999999	3999999	90158D+0	0
	13	1.248	99949984	35738483893	731830+00	14	1.244	1406249999	99999999	999999929D	+00 1	51	.244140	62499999999) 99999	99 <u>8</u> 630+0	0
	16	1.062	25885122	25339858304	632230+00	17	1.062	2558593749	9999999	1999 <u>5</u> 9430D1	00 1	8 1	.062249	874 96 08 93 4 (20973	§05320+0	0
	19	1.061	03515625	000000 C0000	00T09D+00	20	1.061	0351562500	0000000	0000010704	00 2	1 1	.000095	75062570460	164425	<u>4</u> 2 9820+ 0	0
	22	1.000	05385972	69588411239	423880+00	23	1.000	02 39 37 65 64	261516	10624444D+	00 24	4 1	.000005	98441410653	79 026	127900+0	0
	25	1.000	00000000	00000000000	214010+00	26	1.000	000000000000000000000000000000000000000	000000	000076740+	00 2	7 1	.000000	000000000000000000000000000000000000000	00000	- 303680+0	0
	28	1.000	000000000	00000000000	105940+00	29	9.377	41 14877746	60 14 16	953647700-	-01 30	5 7.	509645	95109864056	67 814	- 617530-0:	1
	31	4.396	70338997	19412752582	8 84350-01	32	3.858	3804394562	267125	842685530-	•03					-	
	CEN	VEC 700								-							
•03	1116	03308	015	5801655 <u>2</u>	.015580165	28	031	1603 3079	.157	34439442	-+1573	34439	9442 -	314688788	73	. 314688	78873
61	G EN	VECTOR	NO 16														
.31	6 2 2	396690	.158	11 19834]	.158111983	4]	.316	22 39 66 91	000	77504014	0007	7504	01 <u>0</u>	.001550080	25	.001550(08023
EI	GEN	VEC TOR	NO. 24	244204 72	1670//00/	-									-		-
• 21	400	010004	-+ 12 (244274 [2	+ 12/344394	12	314	PR918888	015	58016693	.0155	58016	5388	.031160330	.06 -	0311603	33158
E I 00	GEN	VECTOR 008024	NO. 32	77504012	000775040	12_	001	55008024-	158	11198346_	1581	1198	1346-	.316223944	91	- 31 6 22 20	-
e	I GE	N SYST	EN CALCU	LATION TOOK	2.424 SEC	DNDS											

and the second strate and the construction of the second of a strategy of the second strate

EIGEN SYSTEM CALCULATION TOOK .056 SECONDS

EIGENVECTOR NO. 6 ,34641879028 -,19990765410 ,40220348720 •,43191148369 -.39191306059 .23816548205 EIGENVECTOR NO. 7 a,27517281591 .55498759644 ,23196389938 .26651432411 .26410038114 .55009570342 EIGENVECTOH NO. 8 .39727283350 .21179602047 -,46496288597 .29168988866 GRAM MATRIX 1 1.05+00 2.0E-14 0. 8,9t-16 -3.6E-15 4.4E-16 1.3E-15 ٥. 1.02+00 5.3E-15 -8.9E-16 5.3E-15 4.4E-15 3.1E-15 2.2E-15 1,02+00 8,9E-16 4,4E-15 -2,7E-15 2,7E-15 -4,4E-16 1,0=+00 3,65-15 1,18-14 -1,38-15 0, 1,0=+00 -3,6E-15 2,2E-14 8,9E-16 1,0=+00 7,1E=15 =4,0E=15 7 1.01+00 -8,25-15 8 1,0E+00

EIGENVSCTCH NO. 1 +,35107470152 +,35348363843 -.35156967021 -.35559229298 -,35676462594 -.35124933787 -.35035161593 -, 35825327496 EIGENVECTOR NO. 2 ,35476267545 .,34463231480 ,35588036826 -.35821163833 .35261386114 -.34027085947 ,36064810770 -,36085696182 EIGENVECTON NO. 3 .34334931916 ,36285830964 -.33896973303 -.34896813823 .34556956410 ,36346253367 -,36124357821 -,36306387119 EIGENVECTOR NO, 4 ,37647519702 -,37164756723 +.33777308215 .30509934017 ,35116118347 -,33312187382 - 37043559577 .37611358253 EIGENVECTOR NO. 5 27354733003 ,23701606394 .38387002433 .47750286817 -.26461202441 -,26353078902 -,38828835941 -,45099247078

-.35931811724

-,22490901635

,38601270594

,39024046873

.26171204355

-.20972605153

7 1,0000000000620574320479250+00 8 1.0000000000000051063055720260+00

EIGENVAL 1 1.0000000000 3 1.0000000000 5 1.0000000000 7 1.00000000000	VALUE UE ERRUR 04E+00 2,62E+15 01E+00 1.51E+14 00E+00 -1.00E+00 00E+00 -1.00E+00	VECTOR ERHOR 3,96D-02 2.27D-01 8.67D-14 1.13D-13	RESIDUAL LENGTH 6,620-14 6,54D-14 8,670-14 1,13D-13	EIGENVALUE 2 1.000000000002E+00 4 1.00000000000E+00 6 1.000000000000000000000000000000000000	VALUE ERROR 8.952-15 1.75E-13 -1.00E+00	VECTOR ERROR 1.08D-01 1.81D+00 7.59D-14 7.22D-14	RESIDUAL LENGTH 8.25D-14 9.67D-14 7.59D-14 7.22D-14
---	---	---	--	---	---	---	--

I J 1 1 2 8 4 5 8 8	A(1,J) 1.000E+00 1.634E-13 4.761E+13 1.000E+00 5.471E+13 1.00UE+00	I 1 2 3 4 5	J22358	A(1,J) 3.055E-13 1.000E+00 1.000E+00 1.634E-13 1.776E-13	1 1 2 3 4 6	133466	A(1,J) 5.471E-13 1.776E-13 3.055E-13 4.761E-13 1.000E+00	I 1 2 3 4 6	J4 4 5 7 7	A(1,J) 1.776E-13 5.471E-13 4.761E-13 2.629E-13 1.776E-13	I 1 2 3 4 5	J 5 5 6 8 8	A(1,J) 8.029E=13 2.629E=13 1.634E=13 8.029E=13 5.471E=13	l 1 2 3 5 7	J 6 6 7 5 7	A(1,J) 2,629E-13 8,029E-13 8,029E-13 1,000E+00 1,000E+00	I 1 2 3 5 7	J77868	A(1,J) 4.761E-13 1.634E-13 2.629E-13 3.055E-13 J.055E-13
------------------------------------	--	----------------------------	--------	---	----------------------------	--------	---	----------------------------	------------	---	----------------------------	-------------	---	----------------------------	-------------	---	----------------------------	--------	---

8 BY 8 HADAMARD PRODUCT WITH EIGENVALUES 1.0, 1.0+2.++(-K) , K=35 TO 44

ы С С 16 BY 16 HADAMARD PRODUCT WITH EIGENVALUES 1.0, 1.0 + 2.**(-K),K #24 TO 38

. '

.

					51	651		1 110			VA	LUE		V	EC1	TOR		RES	SID	VAL				51	65)			c		VA	LUE		Y	ECI	ROR	R	51	DUAL		
		4	1.	000	00	00	596	056			5.2	28+1	9	4.	181) = 0	6	1.2	250		2	4		000	002	20A	102	C	n .	4.0	40. 40.4	0	_ ^ E	8 1 1 8 1 1) m) = 0.6		- EN	6 M		
		3	- i.	000	000	001	40	016	+00		1.8	at-	18	1.	55) = 0	5	1.1	60	-17	- 2	- 4	- 00	000	0.00	074	81	5-01	, .	317	10.4	6		441	1-16	1	46	0-10		
		5	1.	0.00	0.0	000		250			7.1	RE+1	I A	6.	211		5	11	LAD.	-17				000	000	A 4 A	147	5 - 01 5 - 01		4	4 C - 4	7		146)-u,	1	4 4 4			
		5	1.	000	000	000	,	316			3.3	AL	17	2.	681	-0	4	1 2	250.	-17		-		000	000	010	44	5-01			20-1 20-1	4	- <u></u>	151		1	10	0-41		
· · ·		ġ	- 11	000	000	000	102	3.71		5	4 . 4	36-	1.4	1.	011	-0	ż	111	1711	-13	4	- 1		000	000	007	4.4	C + 0	u .	7 8	46-4	4	1	521		1	- 2 -	9-19		
			1	000		000	, u e. 	500			<u> </u>		14	4	641		ž			- 4 7	40	1	100	000	000	0 U L	10	C • U •		3.5	16-1	0	2.	201	1-03	. 1		0-13		
		- 11		000		100	- 0 ij	1 60			7 6	96	10	7	941		ž	÷.		•13	14	1	• 00	000	000	000	27	=+01		2.1	36#1 C# .	2	1.	221	1-04	1	• / *	0-13		
		13		000		000	100	220			5 7	755.	17	~	601	- U	2	1.1	100	"13 1 "	14	1	• 0 0	000	000	000	101	E+01		0.1	2t-1	2	4.	20:) = 0 2	1	. 4 4	C-13		
•		12	۰.	000	000	000	000	0 - 1	:•0.		۰,۹	36 .	1.5	ч,	021	0 -0	č	1.0	220	=13	10	1	.00	000	000	000	00	5+01		3.7	2E-1	2	3.	33[0-02	1	13	D-13		
	1	1.00	0000	059	960	464	447	75	3732	292	255	D + 0 (0	2	: :	L.O	0 0 0	000	29	8023	2238	768	Q 29	033	104	+00)	3	. 1	,00	0000	01	490	116	5119	382	135	45261	+00	
	4	1.00	0000	007	745	056	305	961	8223	506	418	D+01	0	5	; ;	L . O	0 0 0	000	003	7252	9029	835	578	617	4 D -	+ 0 0)	6	1	.00	0 0 0 0	000	186	264	1514	903	167	64201)+00	
	7	1.00	0000	001	93	13	229	73	Z109	23	629	D+0	D	8	: :	L.O	0 0 0	000	000	4656	6128	652	051	618	70	+00)	9	1	.00	0000	000	023	28;	5064	005	189	7407!	+00	
· 1	0	1.00	0000	001	011	54	153	12	4578	815	231	D + 0 (0	11		1.0	000	000	000	0582	0764	392	858	958	1D-	+00)	12	1	.00	0000	000	002	91(371	040	564	47181)+00	
1	3	1,00	0000	00	001	45	514	19	4683	325	371	D+0	0	14	E d	1.0	000	000	000	0072	7601	790	548	360	00.	+00)	15	1	.00	0000	000	000	36:	3784	520	876	66571	00+00	
1	6	1.00	0000	000	c e o	0.0	003	21	0715	519	284	D+0	0																											
c 1 G			<u>ы м</u> е	.																																				
,249	9999	9402	7.		250	00	008	32	0	۰,	249	999	989(20		• • 2	499	9999	905	45	•,2	499	999	944	5	•	.2	499	999	728	6		249	999	9964	14	•	.250(0005	315
51G	ENV 799	ECTO 9401	H NC	••••	2	99	956	37	4		249	999	9961	02		.2	499	9999	967	98	• . 2	500	000	875	7		.2	499	996	738	7		250	0.01	1039	97		.250/	0013	70R
			-	•			-			•						-			-		•						• -				•	•	••••	•••						
EIG .249	1999	5304	5 H NC).	3 250	0.0	011	25	8	۰.	249	999	792:	38		• , 2	499	999	483	28	.2	499	994	996	7		.2	500	002	139	2		250	000)325	65		.250(0005	527
c																																								
.250	1000	0393	5 NC	·	249	999	952	46	3	•.	249	999	875:	25		12	499	986	613	73	.2	5 Ó G	007	542	3		•,2	500	0 0 0	489	0	۰,	250	00(320	12		.2499	9985	048
616	ENV	Ecto	RNO	. .	5																																			
,249	9998	19594	5	•	25(000	06	505	9	•	249	998	188	84	,	• 5	500	01	432	46	•,2	499	995	514	2	•	• , 2	499	998	196	4	۰.	250	000	071	71	•	,2499	9745	204
510 250	95NV	ECT0	R NO	·.	249	799	78:	>51	3		249	999	032	81		.2	500	01:	192	34	.2	500	036	403	8		. 2	490	951	986	8		250	0.03	298	76		2490	9028	243
-,				•	-				•	•			• - •	-		•-	•••					- • •	•••		÷.		•-				-	•					-			
E10 ,249	3ENV 985	15539	H N0	۰.	7 25(01	09	136	3		249	992	31 2	62		•.2	50(15	430	02	-,2	499	895	68	9	-	•,2	500	146	186	3		250	00:	3268	76		.2499	9036	375
				_																																		-	-	
.25C	1014	1=CT0 19096	0 NG		8 25(000	542	274	6	-,	249	993	392	73		.2	49	981	201	07	•,2	499	946	78	4		•5	499	931	476	6	•	25 Q	019	9495	45	-	.2499	6820	661
٤I	SEN	I SYS	TEM	CA	LCI	JLA	T 1 ()N	T00	ĸ	• 3	46	SEC	ONI	DS																									

54

.

.

and the second second

W21+ SEC 6.4

						NAI VAI	LUE	VE	CTOR	RES	IDUAL								/ALUI	E	VEC	TOR	RESI	DUAL	
			EIGE	NVALU	JE	ERI	ROR	ER	ROR	LE	NGTH				EIGE	VALL	JE	- (RROF	۲.	ERR	ÛR	LEK	ig th	
	1	1.07	46194	18290)E+01	-1.00	DE+00	1.1	10-13	1.1	10-13		21	.0740	6194	1829(DE+01	-1.	00E	+00	1.28	0-13	1.28	JŬ−13	
	3	9.21	06786	47361	E+00	1.23	3E-16	1.4	8D-03	8.3	10-14	•	49	.2100	6786	4730	5E+00) 1.	71E-	-16	1.74	D-03	9.81	0-14	
	- 5	8.03	89411	22829)E+00	2.7	8 E-18	1.9	90-05	1.4	00-13	3	68	.0389	9411	15814	4E + 0 0) 1.	87E-	-18	1.63	0-05	1.14	D-13	
	7	7.00	39522	09529	E+00	8.44	E-20	4.5	3D-07	1.8	60-13	3	87	.0039	9517	98610	5E+00) 9.	14E-	-20	4.72	0-07	1.94	0-13	
	9	6.00	02340	31584	E+00	5.31	8E-21	1.8	00-08	2.9	80-13	3 10	06	.000	2175	2225	7E + 00) 5.	95E-	-21	1.90	0-08	3.13	0-13	
	11	5.00	02444	25002	E+00	4.2	5E-22	9.5	9D-10	4.4	30-13	3 17	24	.999	7824	77743	3E+00) 3.	51E-	-22	8.72	ŭ-10	4.03	13-13	
	13	4.00	43540	23441	E+00	6.51	6E-23	8.9	00-11	7.3	90-13	3 14	4 3	.9960	0482	01384	E+00) 6.	30E-	-23	8.71	0-11	7.23	0-13	
	15	3.04	30992	92579)E+00	1.3	7E-23	1.2	90-11	1.0	60-12	2 10	62	.9610	0588	84186	5E+00) 1.	.39E-	-23	1.30	0-11	1.07	0-12	
	17	2.13	02092	19362	E+00	4.6	5E-24	3.6	90-12	1.2	60-12	2 1	8 1	.789	3213:	52695	5ē+00) 5.	70E-	-24	4.09	U-12	1.39	0-12	
	19	9.47	53436	75293	E-01	5.2	LE-24	2.7	40-12	1.9	00-12	2 20	0 2	. 5380	0581	70967	1E-01	6.	70E-	-24	3.11	0-12	2.16	0-12	
	21	-1.12	54415	22120	E+00	3.3	9E-24	1.5	7D-12	2.1	60-12	2													
								•																	
1	1.074	461941	82903	35751	34299	92190)+01	2	1.07	46194	18290	3357	7507	17370	827D	+01	3	9.2	2106	78647	3613	32053	67609	1 9970	+00
-								-										-					_		
4	9.210	067864	73049	18648	11 96 8 1	58471)+00	5	8.03	89411	22829	0232	3590	5164	1020	100	6	8.(3894	41115	8142	73308	74340	16 05 804	+00
-	7 003		05204	76477		00460		0	7 00	20517	00414						•							7/030	
	1.003	393220	172200	12013	01503	00021	J+00	9	1.00	24211	40010	>>/4%	0721	13000	0030	FUU .	7	0.0	00023	34031	2841	01010	01/10	14030	100
10	A 0.00	121763	22570	C 01 4 7	01370	05140	100		5 00	0 26 6 6	26001	0120		6201/	620	-00	12		0070		74.20	A1 960	00463	0.0	
10	0.000	521152	22510	70140	101213	03100			3.00	02777	23001	1 3 1 3 0	0000	2221-	1 22 0		12		77710	2411	1427	01039	70052	23710	/00
13	4.004	435402	34408	56739	09746	90880	+00	14	3.99	60482	01383	6250	3072	95016	5 86 D	F00	15	3.0	4304	99292	5768	27779	33164	325300	• 00
																					2100			32350	
16	2.961	105888	41857	26691	61337	42310)+00	17	2.13	02092	19362	2505 99	9448	50954	4420-	+00 -	18	1.7	8932	21352	6950	81 406	04467	4285D	+00
•																									
19	9.47	534367	52929	32788	50641	10970)-01	20	2.53	805 81	70966	57816	7710	0921	850D-	-01	21	-1.1	2544	1522	1199	84222	29677	3 34 700	+00
EIGE	N SYSI	TEM CA	LCULA	TION	TOOK		L4 SEC	ONOS																	

S С

W21- SEC 6.4

A(1,J) J A(I,J) IJ A(1,J) I J ALI; JE 1 .1 1 I J A(I,J) 1 A(1,J) 1 LI A(I,J) 1.000E+01 1 2 1.000E+00 2 2 9.000E+00 2 3 1.000E+00 1 1 3 3 8.000E+00 3 4 1.000E+00 7-000E+00 4 4

 1
 1
 1
 1
 000E+00
 2
 2
 3
 1
 000E+00
 3
 4
 1
 000E+00
 4
 4
 1
 000E+00
 7
 7
 4
 000E+00
 7
 8
 1
 000E+00
 7
 8
 1
 000E+00
 7
 8
 1
 000E+00
 7
 8
 1
 000E+00
 7
 7
 4
 000E+00
 7
 8
 1
 000E+00
 10
 11
 1
 000E+00
 11
 12
 1
 000E+00
 11
 12
 1
 000E+00
 11
 12
 1
 000E+00
 11
 12
 1
 000E+00
 12
 12
 1
 000E+00
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 1

		EIGENVALU	VALUE ERROR	VECTOR	RESIDUAL LENGTH		EIGENVA	LUE	VALUE	VECTOR	RESIDUAL
	1	1.074619418290	E+01 7.23E-27	6.860-14	1.050-13	2	9.2106786473	33E+00	2.145-27	4-270-14	5.000-14
	3	8.038941119306	E+00 2.27E-27	4.680-14	4.850-14	4	7.0039520026	65E+00	2.10E-26	1.450-13	1.450-13
	Š	6.000225680185	E+00 5.22E-26	2.280-13	2.260-13	6	5.0000081586	73E+00	9.06E-26	3.010-13	3.010-13
	7	4.00000205070	E+00 1.51E-25	3.880-13	3.880-13	Ä	3.0000000038	086+00	4-05E-25	6.360-13	6.300-13
	ģ	2.000000000054	E+00 8-70E-25	9-330-13	9.330-13	10	1.0000000000	016+00	1.50-24	1.224-12	1.220-12
	11	6.890201209496	E-25 2.53E-24	1-590-12	1-590-12	12	-1.00000000000	016+00	2.64F-24	1.620-12	1.620-12
	13	-2.00000000054	E+00 3.21E-24	1.790-12	1.790-12	14	-3.0000000038	0.6+00	4 576-24	2 140-12	2 140-12
	15	-4 000000000000000000000000000000000000	5+00 7 715-24	2.780-12	2 780-12	14	-5 0000000000000	736+00	1 076-31	2.140-12	2 140 13
	17	-4.000000200010	E+00 1 20E-23	2 600-12	3 600-12	10	-7.0000081300	130 400	1.076-25	3.200-12	3.200-12
	11	-0.000225820185	E+00 1.29E-23	3.370-12	3+370-12	10	-1.0039520020	126+00	1.700-1	4.210-12	4.220-12
	19	-8.038941119309	E+00 2.10E-23	4.510-12	4.070-12	20	-9,2106/864/3	336+00	1.800-23	3.990-12	4.670-12
	21	-1.074619418290	E+01 5.46E-24	1-890-12	2.890-12						
1	1.074	619418290335757	058688396D+01	2 9.210	6786473330	46488	3276996300+00	3	8.03894111	9306440889	767405898D+00
4	7.003	1952002665361328	366114594D+00	5 6.000	22 56 8018 51	70344	1252727840+00	6	5.00000815	86729450104	+ 64 05 0 3 8 7D+ 00
7	4.000	000205070437800	318642310D+00	8 3.000	0000038081	26883	15353456430+00	9	2.0000000	00544881077	033794980+00
L O	1.000	000000000619745	3800191220+00	11 6.890	2012094958	86 62 (2998391360-25	12	-1.00000000	0000619745	60017775D+00
13	-2.000	000000054488107	7033782680+00	14 -3.000	0000036081	26883	5353443600+00	15	-4.00000020	50704378003	186405580+00

18 -7.0039520026653613283661111710+00

16 -5.0000081586729450104640478510+00 17 -6.0002256801851703441252699980+00 19 -8.0389411193064408897674023750+00 20 -9.2106786473330464883276965310+00 21 -1.0746194182903357570586882440+01

EIGEN SYSTEM CALCULATION TOOK .726 SECONDS

....

56

. .

.

THE MATRIX RB WITH RANDOM PURTERBATIONS ON THE LAST TWO BITS OF EACH ELEMENT

1	J	ALI.JI	1	J	A(I,J)	. 1	J	(L.I)	1	J	A(1,J)	1	J	ALL,J)	I	J	A(1,J)	1	J A(1.J)
1	1	6.110E+02	1	2	1.960E+02	1	3	-1.920E+02	1	- 4	4.070E+02	1	5	-8.000E+00	1	6	-5-200E+01	ĩ	7 -4-9005+01
1	8	2.900E+01	2	2	8.990E+02	2	3	1.130E+02	2	- 4	-1.920E+02	2	5	-7.100E+01	Ž	6	-4.300E+01	2	7 -8.000E+00
2	8	-4.400E+01	3	3	8.990E+02	3	4	1.960E+02	3	5	6.100E+01	3	6	4.900E+01	3	7	8.000E+00	i	8 5.200E+01
4	4	6-110E+02	4	5	8.000E+00	4	6	4.400E+01	4	7	5.900E+01	4	8	-2.300E+01	5	5	4.110E+02	5	6 -5.390F+02
5	7	2.080E+02	5	8	2.080E+02	6	6	4.110E+02	6	7	2.080E+02	6	8	2.080E+02	7	7	9.900E+01	7	8 -9.110F+02
8	8	9.900E+01													÷	•		•	• •••••••
					. V.	ALUE	۰.	VECTOR	RESI	DUA	L.				VALL	JE	VECTOR	RES	TDUAL

			E	IGENVA	LUE	ERROR	E	RROR	LENGTH		E	IGENVAL	UE	ERROR	ERROR	LENG TH
		1	1.0200	490184	30E+03	6.02E-2	20 1.	110-09	5.430-1	1 2	1.0200	0000000	0E+03	3.638-20	8.610-10	4.220-11
		3	1.0199	019513	59E+03	1.28E-2	20 3.	620-10	3.55D-L	1 4	1.0000	000000	0E+03	-1.00E+00	3.330-11	3. 330-11
		5	1.0000	0000000	00E+03	-1.0CE+0	0 5.	220-11	5.220-1	1 6	9.8048	6407221	1E-02	1-495-20	3.900-10	3.820-11
		7 -	7.3396	222421	136-13	3.298-2	20 5.	790-10	5.680-1	1 8	-1-02004	4901843	0E+03	6.68E-24	6.210-14	8-140-11
															00010 11	
1	1.	0200	4 901 8 4	300020	079595	63330D+03	2	1.02	0000000000	0004865	79665326	610+03	3	1.0199019	513592828970) 94 8 86 6 7 5D+ 03
4	1.	0000	000000	000046	669780	94841D+0	5	1.00	000000000	0004479	81012090	080+03	6	9.8048640	722105125974	226824210-02
7	-7.3	3396	222421	130509	239972	034860-13	8	-1.02	004901843	0001189	41433170	87D+03				
EIGEN	IVEC	TOR	NO. 1													
•63244	793	382	.31	622396	693	.3162239	06692	• 63	244793382	00	15500802	25(001550	08023	00310016048	.00310016048
EIGEM	IVEC	TOR	NO. 2													
.22360	0679	776	44	721 359	549 .	44721,35	59550	• 22	3 60 67 97 77	•44	72135954	474	447213	5954 <u>7</u> a	22360679782	22360679782
FIGEN	VEC	TCR	NO. 3													
.06232	2066	162	.03	116033	085 -	0311603	3075	.06	2 32 06 6 1 5 7	31	46 887888		314688	78883	62937757754	62937757754
EIGEN	IVEC	TOR	NO. 4													
.130.03	1200.	413	• 20	012120	321	.211011	3 8 3 1	-• 2 9	432003103	• 41	09/86/75	>r ~ •⁴	455414	32400	20548933879	22770716200
EIGEN	IVEC	TOR	NO 5													
.35878	210	858	•49	538598	504 -	7175642	1716	24	7 69 29 92 52	19	77284162	210	024449	81590	09886420811	.01222490795
FIGEN	VEC	TOR	NO. 6								· · · · ·					
.62937	1757	756	31	468878	878	.3146887	8878	629	937757756	03	11603308		031160	33078 .	06 23 206 61 59	06232066161
																100252000101
EIGEN	IVEC	TOR	NO. 7													
•04472	135	957	08	944271	909	.0894427	1909	• 0 4 4	472135957	62	60990337	10	526099	03370	31304951685	31304951685
FIGEN	IVEC	TOR	NO. 8													
.00310	016	048	.00	155008	024	.0015500	8 024	.003	310016048	-31/	62239669		16223	96691	63266793383	- 43744703383
								• • • •							05244755505	
GF	LAM I	MATR	IX													
1	1.0	E+00	1.76	-15 -1	.4E-15	4.0E-16	8.8	E-15 I	1.8E-14 -1	L.5E-15	5.6E-1	17				
2	1.0	E+00	-1.8E	-14 1	·8E-15	-2.28-15	4.0	E-15 (). 👘 🕴	8.96-15	-					
3	1.01	E+00	-5.36	-15 1	.5E-15	-6.7E-16	1.6	E-14 2	2.35-14							
4	1.01	E+00	1.4E	-16 5	.36-15	1.8E-15	8.9	E-15								
5	1.00	E+00	-1.6E	-15 -3	.36-15	-2.8E-15										
6	1.0	E +00	-4.1E	-15 2	.OE-15											
7	1.0	E+00	8.0E	-15												
8	1.01	E+00														

EIGEN SYSTEM CALCULATION TOOK .056 SECONDS

57-58

APPENDIX C

4

, K

0

Control Cards for Using SEVER on the CDC 6600

APPENDIX C

Control Cards for Using SEVER on the CDC 6600

SEVER is maintained in a library file for the convenience of the Control Data 6600 users at Sandia Laboratories, Albuquerque, New Mexico. The name of the file is MATHLIB. Questions concerning the availability of SEVER on the Control Data 6600 at Sandia Laboratories, Livermore, California, should be directed to the Numerical Applications Division 8321.

One control card, COLLECT, is required for using the mathematical library file. The COLLECT processor operates on one relocatable binary file and from one to six library files. The library files are searched for routines which contain entry points matching external references in the relocatable binary file. Such routines are added to the relocatable binary file.

A complete typical example follows:

JOB CARD ACCOUNT CARD FUN,S. COLLECT,LGO,MATHLIB. REDUCE. LGO. 7/8/9 punch in column 1 Program 7/8/9 punch in column 1 Data 6/7/8/9 punch in column 1

In the above example, external references in LGO are satisfied, if possible, by selectively adding routines to LGO from MATHLIB. Additional information on the COLLECT processor with examples is contained in UR0004/6600.

 DISTRIBUTION:
 J. W. Jones, 7510

 W. C. Myre, 1210
 W. E. Caldes, 7520

 M. Olson, 1510
 J. W. Pearce, 8120

 V. E. Blake, Jr., 1520
 J. D. Benton, 8121

 T. B. Lane, 1540
 D. E. Gregson, 8130

 R. T. Othmer, 1541
 L. Davies, 8150

 R. Prairie, 1643
 R. H. Meinken, 8310

 W. L. Stevens, 1650
 J. W. Weihe, 8320

 C. Winter, 1710
 J. N. Rogers, 8321

 D. R. Morrison, 1720
 A. G. Schuknecht, 8322

 H. Wicke, 1721
 G. W. Anderson, Jr., 8330

 R. J. Thompson, 1722
 J. L. Wirth, 8340

 R. G. Clem, 1730
 A. N. Blackwell, 8350

 H. J. Sivinski, 1740
 G. E. Hansche, 9120

 A. Lieber, 1910
 G. E. Hansche, 9120

 K. L. Gillespie, 2320
 J. R. Banister, 9130

 K. L. Gillespie, 2320
 J. R. Karam, 9210

 M. T. Abegg, 2340
 J. C. Eckhart, 9220

 M. R. Kerft, 2440
 H. H. Patterson, 9230

 T. S. Church, 2450
 R. E. Hepplewhite, 9240

 M. Rodgers, 2620
 E. C. Rightley, 9323

 G. M. Rodgers, 2620
 E. C. Rightley, 9323

 G. M. Rodgers, 5130
 J. E. Wesbrock, 9411

 <t DISTRIBUTION: D. R. Cotter, 100 W. C. Myre, 1210 O. M. Stuetzer, 1220 D. M. Olson, 1510 V. E. Blake, Jr., 1520 T. B. Lane, 1540 R. T. Othmer, 1541 R. L. Peurifoy, Jr., 1550 I. M. Moore, 1610 B. E. Arthur, Jr., 1640 R. R. Prairie, 1643 W. L. Stevens, 1650 C. Winter, 1710 D. R. Morrison, 1720 H. H. Wicke, 1721 J. H. Renken, 5231 E. H. Beckner, 5240 H. M. Stoller, 5310 J. E. McDonald, Actg., 5320 R. L. Schwoebel, 5330 R. G. Kepler, 5510 W. M. O'Neill, 5520 M. J. Davis, 5530 R. L. Brin, 7250 T. L. Pace, 7260 J. E. Stiegler, 7280 W. T. Moffat, 7290 E. K. Montoya, 7292 M. McWhirter, 7320 M. Cowan, 7340 F. W. Neilson, 7360 S. A. Moore, 7370

J. W. Jones, 7510 G. J. Hildebrand, J. L. C. Baldwin, 3412 G. C. McDonald, 3416 Attn: M. S. Goldstein B. R. Allen, 3422 C. H. Sproul, 3428-1 (65) B. F. Hefley, 8232 (5)