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Abstract

The far fields from a 1lightning return stroke are a function of the
spatio-temporal distribution of the return-stroke currents. This paper intro-
duces a conical-transmission-1ine model of the return stroke immediately"
following leader closure. Based on this model, return-stroke speed is
computed as well as the far fields. The impact of this model, as well as
other factors, on the far fields is estimated.
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Introduction

The structure of the currents in a lightning return stroke is rather
plex and relatively little is known. While some evidence indicates a

prjpagation speed of ¢/3 is appropriate at late times, there are 1imits in the

e resolution which leave this uncertain. This paper gives another approxi-
e model showing that the speed may be near ¢ at early times, and that

geometric considerations may introduce another factor of 2 in the relation of

far

fields to current.

A conical transmission-1ine model is introduced, appropriate to early

times in the return stroke. This leads to a current increasing proportional

to
the
dep

of

requisite integral far fields are related to the currents, showing the
endence of the far fields on the spatial form of the current.

Combining this model with other factors, various estimates of the ratio-
far fields to return-stroke currents are possible. An order-of-magnitude

variation in this ratio is shown to be plausible, This makes estimation of

ret

urn-stroke currents from far fields similarly uncertain.

time, and extending over a length also proportional to time. Performing _

O




II. Conditions Immediately Prior to Return Stroke

A previous paper [4] discusses the propagation of a leader tip through
air. While this view is somewhat idealized, it can still provide some insight
into some of the physical processes involved. 1In this model the leader tip is
approximated as a circular cone, in which there is a conducting core carrying
most of the current along the axis. The charge is assumed to primarily reside
on the conical surface, forming the surface of some (expanding) corona. This
cone propagates along its axis at some speed bounded by the speed of light.

Consider now that this leader tip approaches a conducting plane as
indicated in fig. 2.1. This plane could also be an approximate symmetry plane
between downward and upward propagating leaders. The lower leader in the
figurelmight then be an upward propagating leader or an image of the downward
propagating leader. On the z = 0 plane the electric field is parallel to the
z axis. With respect to this symmetry plane the fields are antisymmetric [8].

0f course, one may question the suitability of a conical model of a
leader approaching closure to form a return stroke. However, it has some
attractive features. As. the leader propagates through the air, the corona
near the tip has had only a small time to propagate odtward, while farther
behind the tip the corona has had more time to propagate outward. This argues
in the direction of a small corona near the tip with a larger Corona farther
back. For present purposes let us approximate this as a cone. This is also
the static limit for air breakdown around a wire connected normal to a
conducting ground plane [3].

I1f there is a constant electric field normal to the surface of the
corona (say the "breakdown" field Eb of a few MV/m), then the surface charge
density (assuming most of the charge near the corona surface) is a
constant eoEb. Let the corona radius (for z > 0) be

?o(z) = z~tan(ao) (2.1)

so the charge per unit length is
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Fig. 2.1. Leader(s) Immediately Prior to Return Stroke
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Qpl2) = -2me By cos(a, ) ¥o(2)

Sin(ao)

= 27 £ ——ps———— 2
ob cosz(a )
0

= Kz
Sin(ao)
K = -ZweoEb —— = -ZvreoEbao for small @ (2.2)

cos (ao)

Note the minus sign, consistent with negative charge in the cloud propagating
to earth.

~As discussed in [4] the leader itself radiates an electromagnetic
signal, but that is not the subject here. For present purposes we approximate
the leader cone as stationary compared to the wave which propagates up the
cone after closure at z = 0. As discussed later, this return-stroke wave
propagates up the cone at near the speed of light.
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reference conductor. This has been taken as some circular cylinder (centered
on| the z ‘axis) of radius Y . In the region near arc closure at ¢ = 0 a
conical transmission line is more appropriate for the wave expanding
from F = 0. Note that
T = xTx + yTy + zTZ (cartesian coordinates) -
= ?T? + sz (cylindrical cdordinates)
= rTr (spherical coordinates)
o2 =,x2 . y2 (3.2)
2 2y, SR
X = w'cos(¢)
y = ¥ sin(g)
¥ = r sin(e)
z=r cos(s)
Now for small & we have r = z, so r and z are roughly interchangeable in this

cas

tan

Corona Model of Return Stroke

As discussed in [1,7] one can form a transmission-line model of the

htning arc. The telegrapher equations are
3V 9 Q' ol
S E@ v
z 3z \C ot (3.1)
3l

al _ 30 _ | %E-(C'V) (continuity)

e the voltage is defined with respect to some equivalent (approximate)

e for the variables in the transmission-line model.

Now in the corona model we have in spherical coordinates for the induc-
ce per unit length

O




L= uofL
1 8 1 2
f = 5 enfcet(3)] = 57 an(3) for 8 » O
(3.3)
B = effective half-angle in conical approximation of

current carrying core

The capacitance term is different in that it depends on the corona. B8efore
the return stroke it is governed by the cone half-angle a, as

C = =
o F
° a
1 0 1 2
f. = 5= anfcot(37)] = 5= en(=—) fora_ =+ 0
CO 21|' 2 21" Qo (o] (3.4)
a, = effective half angle in conical approximation of

charge carrying corona before return stroke / -

After the return stroke passes the capacitive term is different., In general
the corona is depleted to some degree with an effective half angle @, as

Cl o= >
1 F.
“
1 1 1 2
f. =5—an[cot(z3~)] = 5= an[=] fora, + O
ay = effective half angle in conical approximation of charge

carrying corona after return stroke
This term (al) is discussed in a later section.

Note that for present purposes the z = 0 symmetry plane is taken as
reference conductor in the transmission-line model. So our present calcula-
tions are in terms of the corona of one leader (z > 0) and are applicable to
the other leader by symmetry. '

Now in the usual corona model [1,7] we assume a corona "radius" or
angle a in this case related by some breakdown electric field E, as in (2.1)
and (2.2). As a changes (from say ao) the charge per unit length and the
capacitance both change. As discussed before, this gives a nonlinear set of




transmission-1ine equations. For a transmission line with a' constant capaci-
tance per unit length the wave velocity is

v, = [L'C'] c
° an[cot(5)]
=¢c forg=a (3.6)
For lone with varying capacitance per unit length (as a function of Q') we have
C 172 |
. 1 d
v(0') =;TW[E'TO°—'T]§ (3.7)
For |a general a, (2.2) gives
Q' = -ZweoEb _S_U\_%O_tl__ 2 -2w‘soEba fora + 0 , (3.8)
cos (a) .
The capacitance per unit length is
€
c' =
e
=1 27« L gpr2
fo = 57 anfcot(3)] = 5= an[Z] for e+ 0 (3.0)
' -4ne E
1 0°b '
fe = 57 o[ ok ] forQ' +0
Then we have [1]
Q)2 _1 d ' '
[R5 = ¢ [lo*]f.(")]
c "Ldlo'| ¢
A+
=1 -
iL (3.10)
1 a '
b5 zn(EJ
=0 fora=28

In
tend

2 enfcot($)]
-e——L
2

this nonlinear case then even for a = 8 the veloéity is less than ¢ but
1s to ¢ as f| becomes large (along with fs), i.e.y
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v(Q') » cas f,, f. » » for constant f - f

L> C

ora,8 + 0 for constant

So it would seem that for thin coaxial
approximated as c.

L 7t (3.11)

]

B

leaders the wave velocity can be
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Combining (4.1) and (4.5) together with some assumptions concerning Cé and C!

(vi
cin

Initial Speed of Return-Stroke Electromagnetic Shock Wave

As discussed in the previous section the wave velocity is near ¢
vided the cone angle a of the leader is small, and |a/8| is bounded both
ve and away from zero. Another way to view this matter is to consider an
ctromagnetic shock wave as in [7]. In this situation let.ao represent the
ona in front of the shock wave and @y represent the corona behind,

Considering charge conservation across a shock front moving at speed v

have
I. =0
° (4.1)
Iy = -(% -l
sidering energy conservation there we have the energy per unit length ahead
the shock
0:2 :
O_l 2=_1_ g _,_1_ Q i .
Wo =3 CoVo =5 QVo = 3 T:;' (4.2)
ind the shock
0!2 2
o171 1.,
M=z 7 hh (4.3)
the shock interface there is a power (in the +z direction)
Oi 4.4
P1=V1I1=-(-:-{-Il (4.4)
serving energy (no significant additional losses) we have
1 ' = '
vao - Nl] - P1 0 (4.5)

1
a 06 and Qi) gives the electromagnetic shock in [7] which involves a

cular-cylindrically shaped corona (at least in front of the shock).

In this paper we make different assumptions concerning the cerona,

specifically that it is shaped as a circular cone with a fairly small half-

con
aft

e angle. From (3.4) and (3.5) if @, and @y represent the corona before and
er an EM shock front, respectively, then note that
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C C 2n a
° 1 cot(-é--)
5— + 0(ay)
=—é—ﬂ-£n2° aSuo,al»O
— + 0(a,)
a 1
1
= l—-zn(glj [1+ O(az) + 0(a2)] as a_, a, » 0 (4.6)
2n e, 0 1 o’ 1 *

For al/ao bounded both above and away from zero, then the above difference is

bounded above and below. Normalizing to fc

)
f. - % zn(-il [1+ O(az) + 0(02)
C0 C1 ) @y 0 1
T - 2 2 -
CO f.n(&—o-)[l + 0(0.0)]
. oy
+0asa., a, + 0 for constant — (4.7)
0 1 e,

So the fractional change in the per-unit-length capacitance across the shock
front is small.

If there is a discontinuity across a shock front we can consider a wave
propagating back from the shock front with

V1 - V° )
“T— =4
1 (4.8)
LI
Z1 = t&-s transmission-line impedance behind shock front
- 1

Rewriting (4.1) as

11




L = -[COVo -GVl
v v
1 0 ]
=g | 7= -—= |V
ol f f
C1 Co
‘ fcl
=C1 Vl-?-(-:—vo v
)
,‘ fcl
=C1 Vl-V0+[1-—f-E—]VO v
0
{ zn(—-) [1+0(a2) + 0(a?)]
= Ci qV, =V + ) } vV as + 0
1)1 ] ; 2 0 Bq0 Oq
zn(;—ﬂ [1+ O(ao)]
o
*1
> Ci {Vl - VO} vV asag, a; >0 for constant — a (4.9)
Combining these gives
[0 ]
vV = E%TI = [ Ci]"l/2 as ag, ay * 0 for constant al (4.10)
)
This is just the propagation speed behind the shock front. -
Now since
f
C o= o _ %o Co
1 f T
Cl Co Cl o
> CB,aS @y, Gq * 0 for constant E% (4.11)

then the propagation speed in front of the shock front is the same as that

beh

all,

ind. Interpreting this differently the shock front is not a shock front at
but rather the wavefront is the same as that on a conventional transmis-

sion line.

purg

Going a step further, note that the geometric factor for capacitance
hoses approaches that for inductances for narrow half-cone angles, i.e.,

12




_ Ll o
fo =57 enfcot (5
0
%o
£n[cotf§—)]
= f
L zn[cot(% )]
= fL for g8 = @y
(4.12)
a
cot(EQJ
e, e
o _ co (2)
L encot(§)]
([ + 0(ed) + 0(s7)]
B 2 2
(gt + 0lagd] . .
> 0 as @y g + 0 for constant Eg
In this case since
’ a
' | 0
L1 > Lo as a , B » 0 for constant-g— S (4.13)
then a
v o> [LéCé]’l/z as o, 8 > 0 for constant EQ-‘
- -1/2
= [uy8,]
=C (4.14)

The shock-wave solution then gives a speed of ¢ for a thin conical
leader upon which the return stroke propagates., Then the nonlinear shock-wave
speed tends to the usual transmission-line speed for a thin leader, and this
speed tends to c, the speed of light.
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Solution of Telegrapher Equations for Conical Initial Corona

With the approximation of a constant capacitance per unit length,

combining with a wave velocity of c, let us find an appropriate solution of

the
in
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tio

wit
not

SO

telegrapher equations. Note that as a wave propagates out from the origin
fig. 2.1 it encounters an increasing |06(z)| which is to be collapsed.
s implies an increasing |I|, at least just behind the wavefront. Note that
ind the wavefront we assume that the resistance per unit length is negli-
le. This is partly due to the return-stroke wavefront having passed some
ition of interest on the current-carrying core. In front of.thefwavefront

only the Teader has passed, which we expect carries somewhat less current.

So let us look for solutions of (3.1) with

Li 172
Z, = [ET] = fglzo = transmission-1ine impedance
Yo 1/2 .
Z, = [E~1 = wave impedance of free space , -
0 .

a 5-1)
f =~ f f 1 2 cot 1 1 2 (
- l. = C = 2“ n[ (2 )] 211’ zn(al)

effective half angle of return stroke

= € = [U € ]'1/2

00

<
R

= speed of light

the wavefront a jump discontinuity can be handled by the charge conserva-
n requirement in (4.1).

So let us try a current linearly increasing with t which we take as

1, = -zt for z < ct | (5.2)

1
h K as in (2.2). and ¢ to be computed. Applying (3.1) behind the wavefront
e that ‘

ol 3Q,
1 1
37 0= - 3T for z < ct - (5.3)

L. 1 ¢ forzcoct (5.4)
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This has a solution
0] = gkz for z < ct ' (5.5)

where the charge per unit length has been made zero at the origin to keep the
symmetry with respect to the z = 0 plane.

Next apply charge conservation at the wavefront (z = ct) from (4.1)

giving
I = ekt = -c[Q) - )]
z=ct z=ct
= -c?[1 - ¢] kt
(5.6)
z =-% (a constant)

So the solution in (5.2) and (5.5) can also match the conditions at the wave-
front. This solution is quite simple in form and is depicted in fig. 5.1, .

Now oy is the half-cone angle of the return stroke. This can be esti-
mated from (5.5) and (5.6) with (2.2) as
a =5 a, for small a, (5.7)
Estimating the time derivative of the current
dI
Hfl = -CCZK = nsoEbczao = ZwsoEbczal ~ (5.8)

and taking an estimate of the breakdown field
MV
Eb = 2"“—- (5.9)
and an observed current derivative [6]
d1
dt

L.oltd (5.10)
gives A
= .01 radian = 0.60

%
(5.11)
ay = .02 radian = 1,20

15
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Fig. 5.1. Return Stroke Following Leader Closure
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VI. Radiated Fields

As discussed in [2,5] the far fields from 1ightning can be represented

as
Ee - ‘:E:QFTt’ fe-9
Fie = - 4;rc I <%t -2 (6.1)
Il = TP = direction of propagation to an observer at [
it =1- TrTr = transverse dyad
1= TXTX + TyTy + Iztz = identity dyad

The far-field radiation is governed by an effective source vector -

T(t) = g-t— fy 3(F', t+ I"f; dv' 6.2)
J(F',t) = current density i; 1ightning

Specializing this to a thin current path we have
T(t) = Iz-g-ff I(2', t +—Z'—-‘5§4§-(:"-)-) dz' ~(6.3)

Considering only the current in the return strbke region for 0 < z < ct
and in the direction 8 = x/2 (i.e., broadside) we have

T(t)

ir
z'1 (6.4)

_ 3t \ "
T % 3% fo Il(z ,t) dz

Note that this does not consider the current in the 1eader. Furthermore, Tl
does not include any image or downward propagating return stroke; this is a
separate factor.

Now from (5.2) we have

17




2, 3 ct '

_2ce3kt = 2¢1

Here the velocity of

2
_ 3, at
= -z¢C K T

(6.5)

the return stroke is c. Now note the factor of 2; this

is due to the conical geometry which produces both a current proportional to t

and the size of the region of integration proportional to t.

18
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VII. Comparison of Radiated Fields for Various Kinds of Return-Stroke
Currents
For normalization define an effective source (in scalar form) in the
form |

T = ncl (7.1)

where n can be written as a product of factors to account for various phenom-
ena as

N ,
n=TT7n (7.2)
n=1 ‘

Let nl'represent a geometry factor as

1 for cylindrical geometry
2 for conical geometry (present case)

where the case of cylindrical geometry corresponds to the traditional approxi-
mation of a constant return-stroke current propagating up the leader [6].
Which model is most appropriate depends on what times are being considered.
While the return stroke starts out with conical geometry, by the time it has
traveled tens of meters (or perhaps a little more) it encounters a more fully
developed corona and the cylindrical geometry becomes more appropriate [7].

Another factor is the speed of propagation (normalized to c) of the
return stroke., Designating this factor as n, we have
1/3 for later times in return stroke (cylindrical
model [7])

= (704)
1 for early times in return stroke (conical model)

N2

It is the speed of c¢/3 that has been typically used [9], but this may only
apply for later times. ‘

Now a commonly used factor N3 represents the doubling of the fields

associated with the image of the return stroke below a ground plane (such as

the earth's surface). This assumes that the electromagnetic field measure-

ments are made at this surface. Thus we take
= 7.5
ng =2 - . (7.5)
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The EM source (the return stroke) may or may not be'initiated at the
und surface. While as in a "subsequent" return stroke the source may be at

the| ground surface (so that the "downward" propagating return stroke is
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ually an image) this is not necessarily the case [6]. For an initial
urn stroke, in particular, the downward propagating 1eader can be met by an
ard propagating leader from the ground. The resulting return stroke has
h upward and downward propagating parts (which are both imaged in the
und). Thus we have

2 for "initial return strokes"

n4 = (706)
1 for "subsequent return strokes"

Another factor [6] is the possibility of multiple channels simultane-
ly radiating. There is some evidence for this [2,5]. However, this may be
infrequent event. In any case let

ng = number of "simultaneously" radiating channels (7.7)
- an effective number, not necessarily an integer

Considering only the above factors, let us look at extreme cases. Then

8n5 (maximum)
n = (7.8)
2/3 (minimum) -

ratio of maximum to minimum is 12n5 with ng some positive integer (but not
y large). This is over an order of magnitude variation. The detailed form
any relation of current Yor its time derivative) to far fields is quite
jable which, without detailed knowledge of the spatial form of the return-
oke current, makes such a relationship difficult.

Other factois may also be discovered. For example, we have not consid-
d the effect of the direction to the observer not being orthogonal to the
ection of the current.
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VIII. Summary

This paper has explored yet another model of the lightning return
stroke, one applicable shortly following the initiation of the return
stroke. This model increases the ratio of far field to current by a factor of

2. Combining this with other factors gives an order of magnitude variation of
this ratio. '

Before one can use far fields to infer lightning return-stroke currents
(including time derivatives), it is necessary to establish the spatio-temporal
form of these currents. Various experiments and mathematical models are
needed to resolve this difficulty.
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