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ABSTRACT

3 /

The transmission-line model previously developed for the leader stroke
is applied to the return-stroke of a lightning channel. The charge stored
in the corona is converted into current by a discharge wave. The depen-
dence of propagation velocity on coronal charge and radius leads to front
steepening and the development of a jump discontinuity or electromagnetic
shock in a finite time,
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I. INTRODUCTION

Despite a half-century of investigation of lightning through optical and
electromagnetic means, the basic physics of much of the discharge process is
still poorly understood. Fundamental parameters such as the diameter of the
lightning discharge are the subject of continued cbntroversy. For this
reason it is of value to construct simple models of lightning in order to
estimate the observable consequences of presumed physical mechanisms. What
is proposed here is one such model.

It is reasonable to study the basic physics of the return stroke as a
means of first gaining some understanding of lightning channel properties,
and then using the information deduced to attack the more difficult problem
of the lightning leader. As Uman [1] remarked, “while the time might not yet
be ripe for a theoretical description of the stepped leader, there are many
lightning problems that would appear to be amenable to analysis... [includ-
ing] the dart leader and return-stroke wave-front propagation.” The theoret-
ical model to be described here implies the existence of an observable corona
with a radius of the order of a few meters and explains a number of features
of lightning return-strokes. It should therefore be of interest as it not
only explains observed behavior but should be testable.
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IT. RETURN-STROKE MODEL: BACKGROUND

Our model treats the lightning channel as a transmission line. Such
models have a long history [2, 3, 4]. Experiment and theory suggest that
wire transmission lines at high voltages are surrounded by corona dis-
charges [5, 6] that substantially affect their properties. The lightning
transmission-line model of Baum [7] is a development and application of the
corona-surrounded transmission-line model presented in [5]. It is assumed
that during leader advance charge is deposited in the corona surrounding
the lightning channel. There is optical evidence for a substantial corona
with a typical diameter of a few meters [8, 9], although there is contro-
versy over the effects of atmospheric scattering and film characteristics
on the interpretation of this evidence.

Salanave [10] presents a photograph and its enlargement which appears
to show a corona discharge about a lightning channel. His Figure 7.6
implies a scale of about 15 cm for the arc channel radius and 0.75 m radius
for the visible portion of the corona. The actual corona may be larger,
with the more diffuse current in the outer regions not registering on the
film. Wagner [11] takes a corona radius of about 3 m. Uman [9] says
“Tuminous stepped-leader diameters have been measured photographically to
be between 1 and 10 m .... the large luminous diameter is [thought to be]
due to a corona sheath surrounding the core." If we assume the coronal
radius at the time of the return stroke is unchanged, and that atmospheric
scattering and film fogging may be ignored, this suggests a coronal radius
of 0.5-5 m. Berger [12] estimates the coronal radius as about 6 m with a
charge per unit length 1073 ¢ 3 using 3 MV/m as the static breakdown
field of air. He also states: "“the diameter of the corona shell has never
been measured .... Approximate values may vary from a few meters to 20 or
40 m." A more complete theory of the corona discharge is needed if we are
to determine the charge, current density, and optical emission as a func-
tion of radius.




The return stroke is assumed to be the consequence of this stored
charge being converted into a current by a discharge wave travelling up the
line. This return-stroke model is therefore a departure from the others
(2, 3] in that we do not assume an initially uncharged line which passively
transmits a current supplied at one end, but rather a charged line which
supplies the current itself. Wagner and Hileman [13] considered a rapidly
collapsing corona about a return stroke, and Pierce [14] and Rao and
Bhattacharya [15] considered a slowly collapsing corona as providing the
“continuing current" between return strokes. Wagner [11] viewed the return
stroke as neupralizing the charge laid down by the leader.

The table on page 19 of [7] shows some of the relations among the
corona radius Yo, the velocity v, the charge per unit length Q', and the
current I for a leader pulse which corresponds to an expanding corona., The
return stroke, however, corresponds to a collapsing corona which, as will
be seen, has some quite different characteristics. Considering a simple
constant velocity wave with

T3 | (1)

one can take various observations of current and imply Q' and Yoo Using
the data of Garbagnati [17] and Berger [28] the distribution of Tightning
return-stroke currents cuts off above about 100 kA. This corresponds to

|I| = 100 kA
|o" =1 mC/m
ch9m ' (2)




A 14 Km long lightning channel, for example [16] would corresponds to 14 C
of stored charged, which is roughly the observed maximum chzrge delivered.
These numbers represent approximate maxima and typical Q', I, and hence Y.
are somewhat smaller.

As we develop our return-stroke model, let us keep these general magni-
tudes in mind.




ITI.  NONLINEAR TRANSMISSION-LINE MODEL

The basic transmission line geometry is sketched in fig. 1 (reproduced
from [7]). The return Path of the transmission line is treated as a
cylindrical return path at large radius, ¥,+ It is shown in [18] that this
is a reasonable approximation for the line properties (treating the channel
as a thin wire antenna) so long as Y. is small compared to the wavelength
considered, Strictly speaking, we would in general have a frequency-
dependent inductance, etc. The dépendence is as the logarithm of the wave-
length and is therefore a weak function of frequency. The accurate treat-
ment of this effect would introduce a major complication in the model,
requiring a treatment in frequency space followed by a transform back to
time domain., The model treated here should be reasonable over a Timited
frequency range, but we should bear in mind the dispersive nature of trans-
mission along such a line due to the frequency dependence of the line
parameters which is neglected here. We use the same notation of [7],
retaining primes on the quantities that are per unit length,

The line equations are:

HE) - % - (3)

3l 3Q'
s | | )

where the voltage may be found from the fundamental relation-V = Q'/C',
where Q' is the charge per unit length. We have neglected the leakage
capacitance in.the corona, i.e., the resistor is assumed to be of
negligible resistance or large conductance Gé so that the time constant
Cé/ Gé‘ is small compared to times of interest and the voltage across C&
can be neglected. Note, however, that we still assume that the conducting
core of radius ¥o is of sufficiently high conductivity such that it
carries essentially all the current in the z direction (Tongitudinal).
Furthefmore, the corona conductivity is assumed to be not so large 35 to
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Figure 1.

Sketch of the assumed transmission-line geometry of the model.
A cross-sectional view is shown.




Prevent diffusion of magnetic field through the corona (skin effeqt) during
times of fnterest. Reference 7 gives the values for the inductance L' and
Capacitance C' per ynit length, the latter being a function of 0' due to
the existence of a corona whose radiys depends upon 0', We assume that the
corona extends out from the channel until the field is less than Ep = 2
MV/m, giving the condition on corona charge and radius:

LN - .
,o , e E, v (5)
This gives a nonlinear transmission 1ine equation (since C' is a function
of Q') which may be solved 7, 19] as
Q' =Q'(x)

T=tz/v(Q")

top . {-Z} )
bottom} sign corresponds to propagation in +2 direction

1 d ’ :
Y 'JFW(?") (6)

where v is the propagation velocity of the potential wave.

The wave velocity divided by the speed of light is [7]

§)

v
-E.apa ' (7)
lnnbr)

where Q! and Qg are related to ¥_ and ¥y in the same manner as Q. is

related to 7.:
Q = Zne k¥

% = 2ok 2, . | | (8)
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Fig. 2 shows B as a function of the normalized charge on the line. Note
that the wave velocity is limited by the velocity when the corona radius
has shrunk to the channel radius, and is slightly less than c, the maximum
value of B being:

B” =] o e

[f we used a more complex formula for the corona radius which did not allow
the corona to contract beyond Yq, i.e., if the derivate of the coronal
radius (and hence the derivative of the capacitance per unit length)
vanished near the arc radius, we would regain the limiting wave velocity of
the speed of lfght. Note also that the normalized wave velocity is related
to the three radii (channel, corona, return) by the expression:

2 .2
¥ (1)
R — | (10)

This follows from (6.3) of [[7] or (7) above,

- \yg
. \E

g = 7. (11)
in
(?3)
which gives immediately
2
‘Yg B \Vm
el R - (12)
¥ ewc

and (10) when solved for ¥.. Since 8 is typically in the range 0.1 to
0.5 for return strokes, it is clear that the coronal radius is insensitive
to the arc radius but relatively sensitive to the return current radius.

11
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The transmission-line equations given ahove may be integrated to give
the current and other variahles of physical interest as a function of

charge per unit length. The current is governed by the differential equa-
tion which (in terms of the new variable t) is

M (13)

which may be immediately integrated as

Ql
I -1, =%]  v(q) dq (14)
1 '
Qi
where we have
Ii = I(vi)
initial conditions at © = i
0 = Q'(x,) | (15)

With the change of variables y = /ln(Q;/e'Q'l) we find:

A 2. w2 /an(Q./e|Q'|) )
C ¢ (]
I = Ii:sign(Q') - [ln(—o-f.)-)] [ yze'y dy (16)
/an(Ql/7e|Q])

which by inspection shows that the current is of one sign (does not “over-
shoot") and is in fact monotonic in ’Q" (increasing or decreasing, hut not

both) since the integrand is positive semi-definite. With no initial cur-
rent:

= tstan (Q') 2¢Q, , (0;)-1/2 e|aj| , Q. e|Q’ , Q.
= + m——— n T n - e n
sign (Q e Q-E ZQQ e'Q{‘ 20@' e|Q"

_ o \1V/2  _ o0 \11/2
+ n fla ot - /% erf( |an(—
r er n ; T
ef0’]

(17)
el
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the error function, erf(x), is defined in [20]. We shal] assume that the
.initial charge per unit length on the line ’0%, is Q;/e, the maximum value
allowed by this model (7], and corresponds to a a vanishing wave propaga-
tion velocity. It is plausible that the channel corona will charge up to
this value, whereupon further changes cannot Propagate effectively, Under
this condition we have

' \1-1/2 172
20 [ QY2 (o; )]
I = 2sj 'Y — |2 =%
o @ 2ol Lt e

i)

In the limit where all of the corona charge is removed from the corona
by the passage of the wave, ’Q" = Qp» the current is maximized in magn1i -
tude. This is plotted in fig. 3. Note the nonmonotonic dependence of the
maximum current on 06. This may be seen in some of the figures below which
plot the spatial dependence of the current. The maximum of ,I,eZcQ; is for
Q;/Qé = 45,1 (see Table 1), and I vanishes at Q;/Qé = a,

In evaluating the electromagneticvsignal produced, the following quan-
tity [21] is of interest:

T =

oo
(g

[ et ,t) ave (19)
v.

+> -
This "effective source vector” T is related to the far electric field, for
example, by

E(t) = - 221« 2(t - r/c) (20)
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TABLE 1. CRITICAL VALUES OF Q;/Qd

Ile |I’e
Q* 2cQ’ 2cQ;
5+2 I (Shock I (Continuous
0 Significance 8_(Shock) Solution) Solution)
11.96 Minimum for shock solution 0 0 0.1695
45.10  Maximum I (continuous) 0.4061 0.1908 0.1971
57.79 1 (continuous) = I (shock)  0.4127 0.1966 0.1966
86.74  Maximum g ‘ 0.4160 0.2015 0.1942
123.2 Maximum I (shock) 0.4142 0.2025 0.1909

(see [20] for a complete discuss1on) The vector T is essentially the vec-
tor q of Becker [22], and is a generalization of the “"radiation vector® N
of Schelkunoff and Friis [18] to nonsinusoidal currents. By interchanging
the order of integration and differentiation, and integrating the part of
the arc for which z > 0:

dz ' ‘ (21)

With the substitution

al | _di(x) 3e
ot 2 de ot

we use the similarity solution (6) above with
T=1t-2/v(Q"),

where Q' = Q'(t). From [7] we find

-1
-1 d |1 '
z * vgl”a?[v”
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Thus

sz
-1
[ )
To(t) dt v ; *z dt dz
2=0)

This may be converted to an integral over t via

(22)

-1
-d d |1
wly =2 {1 v 2 & [3])
which follows from t =t - z/v(Q') [7]. Thus
1=t
GRORT IS RS
T=ww
I Q' (t) Q'(t)
- j v di(x) = vl - v2(Q') do’
0 Q' (=) Q' (-)
) Q' (t)
*n ,C.Qo ." en(Qz/e|a’|) !
SQ' ()
U ro g e ( Q(en)
f -Sign (Q‘) q [Q. in Q" - T an < () )] (23)
(%)

If we assume that the initial charge on the line is Q'(-=)

2o
c‘q,
To = -sion (0) FERrgTrany

[1 el M}

= Q“/e, we have:

(24)

The source T, is plotted in fig. 4 as a function of |Q‘|/Q; for fixed
Q./Qq for any t - r/c in (20), Q' may be found and then Toe

17
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As discussed in Section 5, eventually an electromagnetic shock forms.
How soon it forms depends on our assumption of the form of'O'(t) at z = 0,
After the shock forms the above solution does not apply.

The effective Teff differs from TO due to the boundary conditions. A
perfectly conducting ground produces an image field. Thus, for a return
stroke initiated at ground level, Teff = 2T0. If the stroke initiates with
attachment above ground level, at early times there are two waves along the
channel, propagating up and down from the point of attachment. The total
field would then be due to the sum of all of these waves and their images.
This could result in a Teff as large as ¢T0, at least until the downward
propagating wave met its image wave at the surface. Here cancellation
would occur for this pair of waves. Note also.that T must only be used, as

in (17), in the far radiation zone for which the size of the radiating

volume containing the lightning stroke is small compared to the distance
‘between the observer and the stroke. Otherwise, the variation in phase of

the contribution of different portions of the channel must be considered.

19




IV. ELECTROMAGNETIC SHOCK LIMIT

We will show below that the wave tends to form a jump or "shock". This
is to be expected because theAwave velocity increases as charge is removed
from the corona and the corona radius shrinks. This causes a trailing dis-
turbance to catch up to the wave front. The situation in then qualita-
tively as in a shock wave in a gas, for which the shock front is subsonic
with respect to flow behind it. Just as acoustic waves steepen into shocks
as a consequence, waves in this model steepen into discontinuous jumps in a
finite length of time. We may then treat Jjump conditions analagous to the
Rankine-Hugoniot jump conditions for the "shock" solution discussed in [(7].

Conservation of charge gives a jump condition
I(behind) - I(ahead) = v[Q'(behind) - Q' (ahead) ] (25)
where [ 26]

I(ahead) = 0, |Q'(ahead)| = Q'(-=) = Ql/e, [Q' (behind)| = qp  (26)

which is generally negligible compared to Q'(ahead). The fundamental
relation for energy conservation is [21, p. 48]

>

» 1 > -+ > > > >
+9.5=0,w=5[ef-E+ugHeH ,S=ExH (27)

oja
X

. L d
where w is the electromagnetic energy (per unit volume) and S the Poynting
flux vector, Integrating over a cylindrical volume containing the wave and
using Gauss' law:

I?!dv+I§-'dK=0 ' (28)

Shrinking the 1ength of the cylindrical pillbox down to zero we neglect the
cylindrical surface and have only the flux contributlons on the planar sur-
faces ahead and behind the front, with:

20
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> +> ®
P = J’S-_dA=21t f SZ ydy (29)
A 0

f g—”t' dV + P(ahead) - P(behind) = 0 (30)
: v

where P is the power in our transmission-line model. We use the identity:

oW d
| j‘é‘t‘d"“a't' f wdV (31)
v v

In a frame co-moving with the front the operator d/dt = 3/at + v « V
becomes simply V « ¢ for a steady wave, and we have finally

v{W'(ahead) - W'(behind)] + P(ahead) - P(behind) = 0 (32)

where W' is the energy per unit length in our transmission-line model.

(:> This gives us a final relation between I and v. Note that dissipative
effects, such as the resistive losses required to establish an arc, are
neglected (unlike the treatment for a hydrodynamic shock, which is irre-
versible).

Ahead of the front W' is the electrostatic energy per unit length due
to the electric field between ¥, and ¥., the contribution within being
relatively small comparéd to this term (and would require a detailed model
for the charge distribution in the corona for its evaluation). Then

. 2 Q! ‘N2 Y :
W'(ahead) = Q “(==). Zn -’):_ = O (=) (’“)zn <:> (33)
) c

4m-:0 'Q'I 41:50» ¥

The expression for W'(behind) contains a similar term along with a magnetic
energy term due tu the current along the channel.

21
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W' (behind) = 2 12 gn (<2} + 1 v2 €2 gn (2= (34)
4n ¥q 0%c b Y. _

while the radial electric field and azimuthal magnetic field gives an
axially directed Poynting vector

..Q": \ya '
P(ahead) = E;Ea | 5 ‘ (35)
c

Now assuming that most of the available charge is depleted behind the front
so that Yo ¥g € ¥_ and E outside Y. is very small, P(behind) = 0.

Solving for I, the jump in current, gives for 'Q" = 04

Q! 02 AL\ Q2 e®  for cq!
I = 1l « —=—2n vl R A=t ) = (36)
o *"\og 2

e/n(Q1/qg) - Q % e/2n(QL/qg)
and
g =¥ L (37)

1
¢ C(Q:' - Qéej /lﬂi Q./Qoi

where in (34) we have neglected Qé relative to Q./e. We have plotted the
approximate g and I in fig. 5. By comparing figs., 3 and 5 it may be seen
that the current asymptotes to the Jump current value for large changes in
charge, as one would expect. In the shock limit, the radiation field con-
tribution (that contribution to the electric and magnetic fields which
falls off as 1/r) is due to processes near the front only, as the current
behind rapidly approaches the constant value of the jump current [. The T
vector defined abbve may be found by using the shock front velocity (34) in
(22), obtaining

c?(q, - qp)

T(t) = — T

(38)
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For 0 < t < tf and zero otherwise. Here tf is the arrival of the return
stroke at the top of the channel. Equation 33 implies that the shock solu-
tion does not exist for Q;/Qé < 11.96, at which point the velocity and cur-
rent fall to zero. See Table 1 for a listing of other Q;/Qé of interest.

We can solve (34) for Q; in terms of g:

-2
Q. = aye(8) (39)
and relate 1 and 8 directly, assuming 06 is fixed:
-2
I= scooe(s ) (40)

Note that as g increases, I decreases. This is contrary to the results of
Wagner [11]. The reason is the lack of dissipation in our shock model.

If, following Wagner, we were to assume the dominant loss of energy were to
arc formation, and assumed v(W(ahead) - w(Behind)) = Alv where A is

a constant, we would still have v = Ie/Q;, but now we would have arc loss
dominates in the limit that the radiation losses (see Appendix A):

03/2 v3laue eA
fe—=—- 20 (41)
e/41reoeA ‘

which accords well with the expressions of [11]. It should at this point
be noted that the "field data" referred to by Wagner [11] are not simul-
taneous measurements of current I and velocity v, but a correlation between
them inferred from the separate frequency distributions of I and v for

-
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recorded strokes. Consequently, it is not at all clear that I is really
correlated with v as shown. On the other hand, as it is well-known that a
lightning return-stroke results in a heated channel (which gives off opti-
cal and acoustic emissions as a result). This non-electromagnetic loss of
energy should be accounted for in any reasonable model of the return
stroke. Furthermore, estimates show that the non-electromagnetic energy
losses are typically of the order of 106 W/m and exceed the electromagnetic
losses by a few orders of magnitude. Consequently, the "lossy shock" model
developed here is quite plausible. Indeed, it will be shown that dissipa-
tion at the wavefront is a necessary consequence of the equations developed
here. Clearly, more observations are needed.

25




V. MATCHING OF SHOCK AND CONTINUOUS SOLUTIONS

The formal solution (7) of Chen [19] to (3) and (4) develops shock dis-
continuities in finite time. This is shown below and discussed briefly by
Chen [19]. Zeldovich and Raizer [24] discuss the analagous case for a
shockwave in a gas, and illustrate the point with fig, 6. The matching of
continuous and shock solutions is discussed by Whitham [25].

In general, the solution (6) will have the appearance of the curve
ABCDEF of fig. 7. The physical charge distribution must, however, be
single-valued. A shock must therefore occur to the right of point B and to
the left of D. In general, we will not be able to do this. If Q'(F) >
0.0836 QL, no shock can connect any point on FED to the initial state.
Even if the above condition were satisfied, a more stringent constraint is
that for the shock solution (36-37) to join a continuous solution (18), we
need Ishock'= Ieontinuous for equal Q'. For Q;/Qé = 103 this requires
Q'/Q. = 0.02, for Q;/Qé = 10%, Q'/Q_ = 0.008. The solutions to be
presented in the next section require shocks which do not satisfy these
constraints,

The physical implication of this result is that a dissipative process
(e.g., the energy which goes into channel heating, ionization, and
radiation) at the shock is required in order to alter the Jjump (shock)
relation Ighock(Q') so that it can match to a continuous solution., If we
alter the right-hand side of (32) to include a dissipation term D>0, we
reduce the Igpock for a given Q', i.e., we raise the allowable Q' for a
given Ignock = Icontinuous- We will show in the next paragraph how to
obtain the shock location from charge conservation. The shock relation may
then be used to infer the dissipation required at the shock front to
achieve this,

26




Sketch, from Reference 24, showing the evolution of a

shock as a nonmonotic function.

Figure 6.
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¥ or [Q']

Figure 7. Location of electromagnetic shock.

Note ihat the infinite value of } still leads to a finite radiated sig-
nal. See, e.q., Price and Pierce (23] for an example. The corresponding
solution is physically reasonable, although the magnitude and time depen-
dence of the dissipation is dependent upon the assumed Q‘(t) behavior. In
principle, one might determine Q'(r) for a shock-like wave along a
lightning channel by requiring a specified D(t) at the front.

The proper shock location may be found as follows. If Q'(z) is speci-
fied (see the next section for specific examples) then I(t) will be deter-
mined. As t =t - z/v, I(t, z = 0) = I(t), so the current flowing out of
(or into) the half-space z > 0 is determined. Given the initial charge in
the region Z > 0, we know from the time integral of I(z = 0) the total
charge in the region at any later time, because charge is conserved. The
continuous solution (6) therefore determines the total charge in the region
at any time, as it satisfies the boundary condition at z = 0 and conserves
energy. Any physically correct solution must therefore have the same total

28"
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charge for z > 0 at the same time as (6). If the continuous solution
becomes doub1e¥va]ued, and is therefore physically unacceptable, a “shock"
discontinuity may be inserted to achieve a single-valued solution, if, as
shown in fig. 7, that shock does not change the total charge of the half-
space, Thus, area ABC = area CDE must be used to locate the shock.

The motion of point D in fig., 7 bounds the motion of the shnck front
At D, 32z/3Q' = 0. This may be recast as

—_ [(a*%) )@

. Q; 3/2
‘2°|° | 30k

dq' (<) :
[an| = QO ]

This equation is implicit in z, since t is a function of z, t =t - 2/

v(Q').
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VI. AN ILLUSTRATIVE INITIAL VALUE PROBLEM

Consider the moment when the stepped leader first makes electrical con-
tact with the ground (or better, upward propagating leader), resulting in the
launching of a return stroke. We may represent this as the interaction at
ground level (z = 0) of two waves of opposite charge and velocity colliding.
This is sketched in fig. 8. The superposition results in a discharge wave
propagating upward for z > 0 and its image for z < 0. The solution of the
transmission line equations above (6) leaves arbitrary the functional form of
Q'(t). Let us consider simple functions for illustrative purposes of the
form

QG = F+ -0 - /)" 0crcq
=f T > 10
=1 t<0 . (43)

where 0; is the charge per unit Tength on the lightning channel, and f is the
fractional charge remaining after the wave passes. Here t has units of

time. This functional form for Q' may be interpreted as a time dependence of
Q' at ground level of (1-t/70)N, since here the variable T reduces to t.

Note that in the notation of the preceding sections of this paper and of £71,
Qb = fQ% and Q; = Q'(-=). We nondimensionalize using Tg 35 our unit of time,
with the dimensionless ¢' = t/19, 9iving us the relation for 7' =

1 -{((Q'/Q;) - f)/(1 -,f)}(l/N . For any position on the lightning channel
(z >0):z = -v(t - t) where t is time (assumed t = 0 at the start of the
wave). Normalizing speed by ¢ (and henceldistance by ¢), we have a nondimen-
sional distance Z = -g(¢' - T) where T = t/ro, = Z/Ctof When calculated by
these formulae, the curves of current and charge on the channel are not
single-valued functions, because v is g function of () and hence ', S0 any

z = v(1y)(1p -'t) = =V(11)(7; - t) may be satisified by T * 1y if for

Ty > T vz(rz) < v(rl). This ambiguity is resolved as discussed in Section
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Figure 8. Lightning transmission line viewed as superposition of two
oppositely-moving traveling waves. At t = 0 we have a
charged line and its image at the ground plane z = 0. At
later times we have a portion of the line with charge
depleted and its image.

2C above. Rather than compute areas for various choices of front position
until equality is achieved, we fit a parahola to the "tip" of the charge pro-
file. With this approximation we can analytically compute the areas and find
the shock position which conserves charge. (Of course, none of this is done
if the profiles are single-valued.) The figs. 9 through 14 show evolution of
the current and charge profiles versus z on the lightning channel, for N =
1,2,3. The distance is scaled by ctg and the curves are at times scaled

by To» 1= t/t0 taking on values from 0.2 to 1. Note that a jump or shock
forms, after which the solution is no longer a function and part of the
plotted curve is unphysical. Before this singularity, the current peak is
behind the shock front, in accord with the comments above about the nonmono-
tonicity of I(0). This is seen most clearly in figs. 11 and 13,
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Current versus scaled position Z for N=1.
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Figure 10. Coronal radius or charge versus scaled position T for N=1.
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VII. DISCUSSION

The most significant and testable feature of this model is the predic-
tion of the existence of a corona with a radius of the order of meters.
Such a corona should be optically observable. The model explains simply
the first return stroke. The subsequent return strokes are possibly the
result of the discharge of the channel after a recharging of the corona by
the dart leader.

We would warn that electromagnetic signals are probably not well repre-
sented by the model, for a number of reasons. NDissipative effects such as
channel resistance or the conductance of the corona are neglected.
Gardner's model [4] showed a "shallowing" rather than a steepening of the
front with propagation, due to channel resistance. The inclusion of non-
zero resistance and finite corona conductivity (as due to finite electron
drift velocities in the corona) would result in additional dispersive
effects on the transmission line, which could counteract the tendency of
the front to steepen, and precise values of these parameters would have to
be known to predict which tendency would dominate.

Finite drift velocities and conductivities in the corona prevent charge
from being depleted instantly at any point, as assumed. This effect alone
limits rise time. The charge carriers in the corona cannot move faster
than the speed of light. For a 3 m radius corona, this gives a minimum
rise time of 10 ns, for example. Collisions will slow the drift velocities
and increase rise times further. Collisional processes in the cor&na give
a finite drift velocity and a finite conductance G' to the corona. They
would result in a limiting rise time of order C'/G', the RC timescale for
the charged corona. This, along with finite channel resistivity can be
"formal1y included in the model, but an analytic solution of (6) would no
longer hold. At present, we know of no theory of the corona which would
permit us to calculate G' accurately. Radiation resistance, i.e., the
radiation reaction on the accelerating charged particles, would limit }
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even if no collisional d{ssipation were present. The losses due to elec-
tromagnetic radiation are not fully included in this model, (Iﬁ the shock
model, for example, only the axial Poynting flux is accounted for,) While
it is not difficult to cq]cu]ate a radiation resistance using antenna
theory, one cannot localize the loss (i.e., find a resistance-per-unit-
Tength distribution along the channel). Consequently, radiation losses
cannot be included in a transmission 1ine model in a simple manner.

It is clear that there is room for theoretical and experimental study
of coronal phenomena. The studies of [5] and [6] inferred but did not
directly observe corona. The inferred corona were of a few centimeters
radius, two orders of magnitude smaller than the expacted corona radius for
lightning. Such a corona might be directly observed with holographic
interferometry. A ruby laser used as part of a Mach-Zehnder interferometry
-~ would give electron number density through the usual Abel-inversion of the
fringe shift as a function of radius. Such information would be valuable
since the references cited note discrepancies between inferred coronal
radius and that expected from equivalance of (5). In fact, [5] suggests
such a model underestimates the coronal radius, while [6] suggests it over-
estimates the radius. DNirect measurement of charge densities, as discussed
above, could clear this up and pave the way for a theory of coronal dis«
charges which include time-dependence and nonideal effects such as finite
drift velocities,

It is well known [27] that the linear telegrapher's equations combine
the features of the wave and diffusion equations, which are different
limits for the equation. In general, we have a finite front propagation
velocity (as in the wave equation and unlike the parabolic diffusion equa-
tion which can fransmit signals with infinite velocity) with a signal that
is smoothing out. To illustrate this, we have solved the case of a trans-
mission line with a current pulse at one end with time dependence
(1-exp(-at)). This is analytically solvable by Laplace transforms if a =
R'/L' for the transmission line, with the conductance per unit length G' =
0. The solution may be put in the form of the convolution:
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Figure 15. Wave propagation along a transmission line with dissipation, illustrating
the diffusive nature of the propagation introduced by finite resistance.
The nondimensional times T are shown for each curve.
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Ty
£(T,q) = 2e77 [ a1y -x) 1<% - ¢%) ulx - q) (44)

where T = at/2 is a nondimensional time, q = az/2v a nondimensional dis-
tance (with v the wave velocity along the line, v = 1/(L'C‘)1/2), u the
unit step function, Iy the modified Bessel function. The solution is
plotted in fig. 15 for nondimensionalized times T = 2.1, 0.5, 1.0, 2.0,
5.0, and 10, Note the reduction of gradients near the front as a function
of time. We expect on the basis of this behavior of the telegrapher's
equation that dissipative effects such as finite conductivity of the chan-
nel or the corona would tend to prevent shock formation. We note further
from the figure that while the edge of the front moves at v, the velocity
of any finite value slows with propagation (e.g., note that the position of
half of full current has moved roughly the same distance in the time
interval 5-10 as in the interval 2-5), This confirms the results of
Gardner [4]. For general inverse rise time constants a not equal to the
transmission line R'/L', the solution cannot be written so simply as a
convolution integral, but the qualitative effect of finite resistivity
should be the same. Webster [25] presents an example of an impulsive
application of a fixed voltage V to a line with resistance. There is in
this case, due to the infinite rise time of the driving pulse, a step
discontinuity at the wavefront, which decreases in magnitude expontially
with time as it propagates: it is very much like a diffusion wave for z <
vt but with zero intensity for z > vt ,and a sharp transition at the front
z = vt, For finite values of the time derivative of I, we would not have
this discontinuity. In principle, a model similar to Gardner's but
embodying channel parameters modified by the existence of a corona could be
used to study such effects, including the nonlinearity introduced by the
dependence of the capacitance per unit length on Q'. In addition to finite
resistance, variable inductance per unit length due to channel expansion
could also be included in a numerical model.

As discussed above, the inductance, which is modeled here as a con-
stant, would actually be frequency-dependent, giving rise to a dispersion
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not accounted for in this simple model. In this context the sensitivity of
the corona radius to return current radius for fixed front velocity should
be noted. Physically, the coronal radius should therefore be determined hy
the dominant frequency component of the current distribution. lincertainty
of the parameters such as channel radius, and breakdown electric field (or,
equivalently, corona radius) make quantitative predictions of wave
velocity, etc, difficult. It seems clear that a more detailed, dynamic
corona model is needed for accurate prediction of corona radius. A more
sophisticated treatment would seem to be called for, especially if observa-
tions reveal a corona as this model suggests. Nonideal transmission line
properties and coronal physics could impose limitations on how rapidly
charge could be drained from the corona, limiting current rise and fall
times.

In conclusion, this model successfully explains many features of return
strokes, including 1) the amount of charge transfered in return strokes 2)
the approximate equality of charge transfered by return stroke and con-
tinuing current. It makes testable predictions, most notably about the
effects of a corona discharge with a radius of the order of 1-10 m, which
should be observable.
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APPENDIX A
SHOCK WITH DISSIPATIVE FRONT

We derive (38), the relationship between current and velocity, for a
shock with an energy loss to arc heating of the form Alv, where A is a
constant. This is the form postulated by Wagner [13]. The energy balance
is

Alv + P = v(U; - U,) (45)

Let us consider the limit where this loss dominates the Poynting vector
losses (radiation losses). The n

Qm
[Avdn = 0;2/6082 - uOIZ zn<§§> (46)

Eliminating v using I/v = Q'/e we have:

! ' -1/2
[aie, eA/Q + ng‘i';/c2 | (47)
e "€ -T2 QO
This is approximately
0.3/2 .
[~ —— (48)
elaueoei
while
L (49)
v = z — 49
4 (I;Eoex
Therefore, the relationship between I and v is found by eliminating
Q' )
I~ v /negeh/e (50)

which is (38).
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