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Abstract

Recent measurements have shown that lightning leader pulses have very
fast rise times. Characteristic times for the rise of as small as a little
less than 30 ns have been observed. Considering the nature of these leader
pulses, an approximate model is obtained. This model is based on an equiva-
lent transmission line as sometimes used in antenna theory. A corona which
increases the capacitance perunit length is assumed to form around the central
arc channel. Letting the corona radius be governed by a simple breakdown
model, a nonlinear wave equation is obtained for the arc. Solving this

8

equation one obtains velocities of the order of 10° m/s and currents of the

order of 15 kA; this agrees well with the data.
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II. Equivalent Corona Radius

The concept of an equivalent corona radius WC to approximately describe
the transmission of waves along wires was proposed by this author in order to
model the experiments conducted af‘Kaman Sciences by Book et al. [4-7]. As

indicated in fig. 2.1 there is a set of radii or equivalent radii

wire radius (or later, arc radius)

Wo =
WC‘E equivalent corona radius (2.1)
¥ = equivalent "outer" reference conductor radius

In this approximation one envisions that there is some reasonably well-defined
(or at least an equivalent) corona region described by ¥, < ¥ < V¥ where ¥ is
the cylindrical radius in a cylindrical (¥,$,z) coordinate system with the z
axis centered in the wire (or Tightning arci. This corona region has some
conductivity o which may be a function of ¥ and t (time), and permittivity € -
which may be taken as €9 the permittivity of free space. |

In a transmission-line model one needs appropriate per-unit-length

parameters. For present purposes let us approximate the longitudinal impedance

per unit as an inductance per unit length

L u f

ol ‘

1, (Y ~
fL = "é‘;‘_' n ?’(‘)‘ (2.2)
Hy = permeability of free space

.

This corresponds to assuming that the longitudinal current is all on the wire

(or later, arc).




Fig. 2.1 Equivalent-corona-radius model
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The transverse admitténce per unit length is more complicated. Given
an assumption of a rotationally symmetric corona (and strictly a coaxial
geometry), then as in fig. 2.1one can divide the transverse admittance per
unit length according to the radia] dependence of o. For simplicity we
assume that we have a definite corona boundary at ¥ = Wc and that for the

region exterior to the corona we have a capacitance per unit length

C
1, (Y |
fC Egln(w—-) (2.3)
o
€y = permittivity of free space

The geometrical factors for inductance and capacitance per unit length are

related by
f. = fL - A
. y ’ (2.4)
: c
A==l g
2m (‘i’o) , |
so that as corona develops A grows from zero and gives a measure of the change
inC'.
If we approximate the corona conductivity, o, as uniform for ¥, < ¥ < WC

then we have a parallel corona capacitance per unit length

2me € -
Cc = ‘yc iy (2.5)
n '@—) .
0
and conductance per unit length
G' = '2'"'0' =9 : (2.6)
‘PC A
n v
0




where the capacitance per unit length in the absence of corona is

A

-1 € 2me
T -1 i+l - _0 _ 0
¢, = [+ o1t - 2. — 2 (2.7)
L zn(——w)
y
0

For present purposes the corona conductance is assumed sufficiently
large that Gé can be considered to have zero voltage drop (compared to that
across C'), and hence Cé can also be neglected. Of course, o is not assumed
so large that WC - Wo is comparable to or greater than a skin depth since
~ that would require changing the impedance per unit length away from that of
a simple constant L'. In this approximation the significant current, I, is
on the wire or arc of radius Wo, while the significant charge per unit length,
Q', is on the outer corona "boundary" of radius WC.

An approximate value for the corona radius can be obtained from

E, = 4L = effective breakdown electric field %{
b ZWEOWC <
Yy = : (2'8)
c ZHEOEb _
dy ¥

c .1 _ _ ¢
diQ'] ZWEOEb QT

This is an important approximation in that the corona radius is only a function
of a single temporal/spatial variable, Q'.

Other kinds of equivalent corona radii are possible involving some
average over the charge distribution. However, for present simplicity the
above form is adopted. Perhaps future developments of this model will adopt

other forms.




IITI. Transmission-Line Equations
For a simple transmission line with a single voltage/current pair of
interest one has a set of coupled first order partial differential equations

in space and time. In the classical linear, time-invariant, bilateral

(reciprocal) case these take the form

Q
<<t

i B A
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Z' = longitudinal impedancé per unit length (3.1)
Y' = transverse admittance per unit length

Vé = longitudinal voltage source per unit length

T; = transverse current source per unit length

where a tilde ~ above a quantity indicates a function of the Laplace-transform
variable or complex frequency, s.

In time domain (3.1) takes on a more complex form depending on the
forms of Z' and Y' which becohe not impedance and admittance functions (per
unit length) but more general operators. However, one can also include non-
linear effects in time domain. Consulting fig. 3.1A note that one can
construct a per-unit-length equivalent circuit using the equivalent circuit
elements per unit length which have been discussed. Note the inclusion of
the time-domain per-unit-length sources for generality; in the present problem
these are set to zero. Using the approximation of sufficiently large o replaces
Gé and Cé by a short circuit. This leaves the simplified equivalent circuit
per unit length in fig. 3.1B. Note that while L' is taken as invariant with
respect to both time, t, and space, z, C' is a function of both of these

parameters thereby making the equivalent transmission 1ine nonuniform.
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B. Case without sources and with sufficiently large corona
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Fig. 3.1 Per-unit-length transmission-line eguivalent-circuit
representation




With these approximations our time-domain transmission-line equations

take the form

A AL
9z ot
31 3 (3-2)
3z = -3 [C'V]
Using the definition of capacitance ‘per unit length
=L (3.3)

The second of (3.2) is the equation of continuity. Replacing V gives for (3.2)

._a_ .Q—'— = ]! .al
9z (C') L ot
(3.4)
Al _ _2Q°
9z at
Using (2.3) and (2.8) we have our approximate form for C' as
I c' = ig.
fc
_ 1 O,
fc = 5 m -I-Q—.—l— (3.5)
Q. = ZTTEOEb‘Pw

so that C' is only a function of Q'. Then (3.4) has independent variables z
and t, and dependent variables I and Q'.
A convenient form for (3.4) is found by eliminating I by operating on

the two equations by partial derivatives with respect to z and t respectively

giving 2 )
E (%) - - @

which is a nonlinear wave equation for Q' since C' is a function of Q' only

(by hypothesis).




IV.  Nonlinear Waves from Homogeneous Equations
The coupled set of first-order equations (3.4) and the corresponding
wave equation (3.6) are homogeneous (sourceless) and admit solutions as non-

Tinear waves as pointed out by Chen [8,9] in the form

Q' =Q'(r)

T=t+* VTéTT. ' ; (4.1)

1 d ' B
{L' dQl [CI Ql ]§

These are waves propagating in the + z direction depending on the sign chosen

v(Q')

(and noting the symmetry). Note that the actual functional form of the depen-
dence of C' on Q' does not need to be specified for this result to hold.

Using the data of Book et al. [4,5] Chen observed that the observed pulse
stretching (or increasing delay) at large amplitudes was consistent with an
amplitude dependent velocity as in (4.1), and that the experimental velocities

8 m/s to between ].x108 m/s and

decreased in the experiment from 3 x10
2 XI08 m/s at the higher amplitudes. In addition it was noted that not all
the details of the waveforms were consistent with this kind of a model, but
the major portion of the waveform fit such a model rather well,

Equations (3.4) can be transformed into the nonlinear retarded time T

by noting
’ 2
BRI CHON
2 = 9T 4
ot . ot 7 dt
constant constant
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9 - 97| d
92 t 9z t dt
constant constant
W, rerdlE -
2z V-3 z
constant constant
ot i, e
9z t * Tz dt [v] §E't
constant constant
ot 2 | dr Lvl]j
constant
ar =+_1.11:1H:'1
0z t v | d
constant

These partial-derivative

formulas can be substituted into (3.4); the second

is satisfied and the first give the third equation of (4.1). The second
f (3.4) becomes }
. g
dI(t =T ' d ' T)
A1) - % v(gr(r)) L (4.3)

noting now that I is a function of t alone since Q'

and v are functions of T

alone. Integrating (4.3) gives
—_ (Q'(7)
I(t) -1_=7% f ¥(q') dq'
o] !
Q%
(4.4)

Io = I(To)

initial conditions at 1 = Ty
Qy = Qlt,)

With given initial conditions then (4.1) and (4.4) give the comp1ete solution

to (3.4) or equivalently (3.6).
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V. Application to Lightning Leader

Applying the foregoing to the arc in the athosphere which begins the
Tightning event requires some careful consideration. Approximations are a
key consideration. Figure 5.1 shows a view of the tip of the lightning
leader. Several physical aspects can be considered.

The concept of a transmission-Tine model jtself leads to problems.
There is no physical return or reference conductor. However, it has been
established that in the case of sufficiently thin conductors a transmission-
line model is still approximately valid [10]. For this purpose thin means a
small radius compared to other characteristic distances such as conductor
length(s) and times of concern multiplied by the speed of light. Even if the
arc channel has a small radius (say of the order of 1 mm) there is still the
larger corona radius of concern.

Another set of problems concerns the leader tip. The pulse of concern
is not propagating on a preexisting conducting wire. The charge near the arc
tip must exceed some value to cause electrical breakdown of the air and
thereby a propagating leader tip. This may give the key to our model. If
the leader tip propagates faster than the wave on the equivalent transmission
Tine (as in (4.1)) then the tip is in effect stretched, thereby reducing the
local charge per unit length and the associated electric field, and hence
stopping the breakdown or reducing the tip velocity. Conversely, if the tip
is propagating slower than the wave behind it, charge will pile up increasing
the breakdown rate and hence the tip velocity. Thus it would appear that the
velocity behind the tip and the velocity of the tip are linked. Furthermore,
since Q' should be above some value to maintain the breakdown velocity we can

neglect small values of Q' in searching for appropriate solutions.
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Fig. 5.1 Lightning-leader model
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With the foregoing in mind let us look for what might be thought of as

a shockwave with no charge or current in front of it and a uniform Q' and I

behind it, i.e.,

I(t) = + v(Q'(1))Q" (1)
Q'(t) = Q'u(t)
I(t) = Iu(T) (5.1)
1 fort>0
u(t) = ,
0 fort <0

Note that this solution satisfies (4.4) as a special simple case.

Further aiding our physical arguments, there is some data that one can
use [1]. Recent measurements of the electromagnetic fields from lightning
show some very fast leader-Tike signals with characteristic times in the
rise of the order of 30 ns or somewhat longer. Via the free-space dyadic
Green's function, a far-field approximation, and reflection at the ground
plane one can relate the fields ba;k to the currents. For the distance back
to the source acoustic arrays énd videotape pictures are used. This results

in a characteristic source parameter

< ,,,H . 9 T "

T, - T(t) =T, « 3% Iv" J(F,t) dv

< <>

T, =T-171 = transverse dyad
t rer ‘ (5‘2)
Tz identity

Tr = unit radius vector from observef to source

for which only the transverse components are observed. Note that for greater

accuracy the current can be written as a function of retarded time.
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Summarizing the data in [1], the magnitude bf the transverse components
of individua1 pulses of T is somewhat variable with the stronger ones in the
1011 Am/s to 1012 Am/s range. One example reached about 1.5 TAm/s, but

appeared to be more like a return stroke.

For comparison to the data note that our simple form of leader in (5.1)

gives a magnitude
1Tl = 1]v(Q") (5.3)

neglecting retarded time effects. In natural lightning one does not have a
semiinfinite channel of current. The pulse event includes not only the

leader tip but a propagation of the disturbance in the opposite direction as
well, communicating the streamer motion back along the arc. This may increase
the result in (5.3) by a factor of 2 or so. | \

Other physical parameters need to be estimated. Let us take

m
R

b= 2 MV/m

&
R

o = 1mm | (5.4)
Y ~10m '

The breakdown field is only approximate and the reader may wish td try other
nuﬁbers; it is altitude dependent, decreasing at higher altitudes. The arc
radius Wo is very crude, but fortunately it only enters logarithmically. The
equivalent outer reference conductor radius is also very crude, but again it
only enters logarithmically. The present estimate is based on about a 30 ns
observed characteristic time for the pulse rise giving a transit time out to
this radius; one can also guess some characteristic length of arc significant
in an individual pulse as being of this general order as well. Perhaps in

the future these numbers can be refined somewhat.
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VI. Velocity Equation

Take the corona radius model in section 2 and solve for the velocity

in (4.1). Starting from the velocity formula

[ -

'
C}ohd
|
a
x:k;
o
o
—

L {
S SR N
fL 2m IQ'I 2m
_1{ 1{
=2 )f - A - =
fL L T
1
_1_A+-2-TF
fL
cC = 1
u080

we can see the decrease of the velocity from that of 1ight. In terms of

charge-per-unit-length

parametérs we have

Q
[V(S.)]Z i n (TQTT) -1

’

i
ey
]

(%)
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Qé ZWEOEb‘PO . (6.2)

Q. = 2me E ¥

0 b

and in terms of radius parameters we have

T\ (6.3)
inl =
(%) .

There are some special cases of interest if we choose Wc as special

values. For

Wc = WO -
2 (6.4)
Vi -
EHIRE
since there is no corona and (6.1) then do not apply. For
?c = Wo +
EEE
c 21rf|_
(6.5)
=] -
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showing some velocity decrease. Note that the velocity becomes imaginary

if Wc becomes too large. The critical value is given by

[ -
o = 0
(6.6)
Yo 1
Y e
so our values of Wc of interest are in the range
Y. '
\1/0 < \PC <= (6.7)
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VII. Solution of Equations

Summarizing our equations we have

1= v|Q'|
Rln g—lg'_L
v 2 "Qo
&) =1-—gt (7.1)
n (ﬁﬁi)
AT
y = —-I-g-l-l-
c ZneoEb

with variables: |I|, |Q'|, v, and ¥.. This is an underdetermined system so
far. There is also the data concerning T or [ I]v.
To get a clue as to what is happening consider the following table in

which Wc is varied as a parameter:

Vv ' »

v, Y Q'] 1] 1]y
0.1m 0.62 11 uC/m 2.1 kA 0.33 TAm/s
0.2 m 0.56 22 uC/m 3.1 kA 0.52 TAm/s
0.5m 0.47 55 uC/m 7.7 kA 1.1 TAm/s

1 m 0.38 110 uC/m 12 kA 1.4 TAm/s
2 m  0.26 220 uC/m 17 kA 1.2 TAm/s

From this we can see that as ¥, increases, v decreases, |Q'| increases, |I|
increases, but [I|v increases then decreases. Since |I|v is related to the
electromagnetic fields observed at a distance the maximum value is an inter-
esting parameter.

The maximum |I|v is found by differentiation with respect to an appro-

priate parameter. Let us use |Q'| giving
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11 = v2|q'

]
(o]
O
—
]

(7.2)

i
(o]
ey
|}
=
3
_—
|62
S ——

Equating the derivative to zero gives a set of parameters associated with the

maximum |I|v as

Q,
IQassoc.l = ;§
2me

omeb
e2
‘Poo
‘P  c—
Cassoc. e?
‘ (7.3)
Ql 3’5
Vassoc, = € {R"(Gg)}

e

t
Vassoc.'Qassoc.l

"

'Iassoc.l

o]

2 '
vassoc.lQassoc.l

max.
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Using our previously selected parameters (as in (5.4)) gives specific numbers

as
IQa'\ssoc.| * 150 uC/m
YC = 1.1m
assoc.
- 8
Vassoc. 1.0x 107 m/s (7.4)
|Tassoc.| = 15 kA
[lIlv} = 1.5 TAm/s

max.
which gives rather reasonable numbers for comparison to various experimental

numbers including those in [1].

AT
R
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VIII. Summary

This equivalent nonlinear transmission-line model of the lightning
leader agrees with some aspects of the data, giving approximate values of
current, charge-per-unit length, and velocity. However, there are clear
Timitations to this model, including the lack of information concerning
characteristic times of the rise and'pu1se width. Perhaps some improvements
can be made to include non-zero resistance per unit length of the arc; this
may be associated with the finite width of the pulses by preventing the
current from maintaining its full value after some time giving a depletion
wave to quench the pulse. There may be some similarity to a nonlinear relaxa-
tion oséil]ator.

One can think of possible improvements to the model by removing the
transmission-line approximation. In antenna theory one often treats thin
wires via an integral equation known as the Pocklington equation in which
there are integfals over current and charge using a thin-wire approximation.
Including the foregoing corona-radius model with current and charge-per-unit
length on different radii, ¥, and WC respectively, is a potential approach.

Another approach to removing the transmission-1ine approximation
involves a Lorentz transformation to a coordinate frame moving in the z
direction with velocity, v. In this frame the electromagnetic problem is
quasistatic if all parameters of the original problem propagate with constant
ve]ocity; v, in the z direction and with constant amplitude.

The present development has evolved witﬁ the leader tip in mind.
However, it may also apply to other aspects of a lightning event, e.qg., a
return stroke, with appropriate changes in the physical parameters in the

model. Evidently considerable research is needed.
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