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Abstract 

 This note investigates the possibility of using the IRA as both a transmitter and 
receiver of electromagnetic fields for the purpose of target identification. Of specific 
interest is being able to estimate the induced open circuit voltage at the IRA source 
terminals when it is illuminated by a scattered EM field from simple conducting bodies 
excited by an incident field from the same IRA acting as a transmitter. In this study, 
several different canonical scatters are considered, including thin wires, spheres, 
conducting boxes, and an infinite conducting plate. For a 7 kV pulse excitation of the 
IRA, received peak transient voltages at the antenna range from a few volts to about 400 
volts, depending on the scatterer. 
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1. Introduction 

 In the 1960’s, frequency-independent antennas were the rage. Log-periodic, spiral and 
conical-log spiral antennas were introduced by Rumsey and others, and Prof. R. DuHamel was 
investigating ways of feeding lens and reflector antennas in such a way that they could also 
operate over a large frequency range. In an early paper presented in an IEEE APS Symposium 
[1], DuHamel and his co-authors describe an innovative antenna design for this purpose. This 
antenna consisted of a paraboloidal reflector fed by several wires starting from the focal point, 
without any terminating resistors at the end of the wires Unfortunately, as far as one can tell 
from a literature search, this antenna design by DuHamel was never pursued and used in 
antenna applications. 

 In 1989 Baum independently conceived of a broad-band antenna concept, which he 
referred to as the “Impulse Radiating Antenna”, or IRA [2]. This concept was developed for 
the purpose of being able to simulate transient EM fields at a target for a wide variety of 
applications – including defense and civilian applications. 

 Subsequent investigations into the radiating properties of the IRA [3] show that it is 
possible to design a reflector-style antenna that can operate in a phase coherent manner over 
several decades in frequency. Within the operating band of the IRA, the radiated field from the 
antenna is almost a linear function of frequency, implying that the radiated field in the time 
domain looks like the derivative of the applied transient voltage source driving the antenna. 
Hence, if a step function voltage were applied to the antenna, the radiated E-field at a distance 
would appear similar to a delta function in time1. 

 Among the many applications of the IRA as a wideband radiator [4], its use as a 
receiver of wideband signals is intriguing. As may be noted from the reciprocity theorem (to be 
described in Section 2.5) within the operating band of the antenna, the received response is 
approximately proportional to the incident field on the antenna. In the time domain, this 
implies that the waveform of the induced response of the antenna (say the short-circuit current) 
is approximately proportional to the waveform of the incident field. 

 An interesting application of the IRA, therefore, is its possible use as both a transmitter 
of a fast pulse to interrogate a scatterer, and then its use as a receiver for detecting the 
backscattered signal, as suggested in Figure 1. In this note we examine this dual-use for the 
IRA and illustrate the levels of received open circuit voltage in the IRA for a number of 
different scattering bodies illuminated by the IRA. 

 
                                                 
1 Of course, the step function response of the IRA would not be an exact impulse function. Because an antenna 
cannot radiate DC into the far field, any waveform produced from this antenna at a distant observation point must 
have zero area, which precludes the impulse function. The actual radiated field from the IRA for a step function 
excitation is reminiscent of the delta function, but has a zero net area. Thus, this transient waveform is referred to 
as being “impulse-like.” 
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Figure 1. Illustration of the IRA illuminating a distant scatterer with field Erad, and 
receiving a scattered field Eex. 
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2. Theoretical Foundations 

2.1 IRA Geometry 

 As described in an early paper by Baum [2] and later in [5, 6], the IRA consists of a 
parabolic reflector having a diameter D and focal length F. The antenna is fed by a parallel 
combination of two constant impedance conical transmission lines from an effective voltage 
source at the focal point. This geometry of this antenna and the feed structure are shown in 
Figure 2. 

 In this antenna there are two 400 Ω conical transmission lines that form feed-arms 
connecting the equivalent voltage source at the focus of the parabolic dish to the edge of the 
dish. Each feed arm is terminated in a resistance of 200 Ω at the dish edges (not shown in the 
diagram), and this provides a total of 400 Ω as a matched termination resistance at the ends of 
each of the two feed arm assemblies.  

 The specific IRA planned for the scattering measurement program is a modified 
version of a commercially available IRA from Farr Research. The modifications consist of: 

i) changing the feed arms from + 30 degrees to + 45 degrees 

ii) replacing the balun with SMA connector  by a new balun with a HN connector 
to handle higher voltages and 

iii) redesigning the termination section by a distributed termination of series / 
parallel connections of carbon composition resistors. 

 This is a parabolic dish antenna having dimensions D = 0.46 meters and F = 0.23 
meters and resulting in a F/D ratio of 0.5. Due to the way that the pulser is connected to the 
feed arms through a balun, the total voltage exciting the feed arms across the dish is effectively 
double the pulser voltage Vo. This voltage Vo. is the output voltage from the pulser, when it is 
loaded by a 50 Ω resistance.  Additional details of the feeding of the IRA are provided in ref. 
[7]. 

The EM field produced by the antenna is described in the coordinate system shown in Figure 2. 
At observation ranges sufficiently far from the antenna, the observation point is said to be in 
the “far field” of the antenna. Giri [8] has shown that for an IRA of diameter D, the range of 
the effective far-field in the time domain is given by 

  
2

2 r

Dr
cτ

≥  (1) 

where τr is the rise time of the pulser source exciting the antenna. For a 0.48 meter antenna and 
a pulser with a rise time of about 100 ps, which is the nominal rise time of typical solid-state 
pulsers, (e.g., FID technology, Kentech etc.), the far-field occurs for r > 3.5 meters. Of course, 
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for observation points closer than 3.5 meters, there is a strong transient EM field produced, but 
it contains a radial as well as transverse field components. The EM field produced by the 
antenna in this range does not appear as a simple plane wave. 
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Figure 2. Geometry of the IRA, showing the coordinate system and a distant field 
observation point. 

2.2 Antenna Excitation Source 

 The pulser that is planned for the experimental work is a PBG 1 high-voltage pulse 
source built by Kentech Instruments Ltd. The peak amplitude is typically 7 kV into a 50 Ω 
load, and the output waveform consists of a fast rising edge followed by an exponential decay. 
The full-width to half-max (FWHM) time of the pulse is about 3 ns and the 10-90% rise time 
is about 100 ps. The pulser has an internal repetition rate and delay generators, as well as an 
amplitude control.  

 To use this waveform for an analysis of the EM fields produced by the IRA, we use a 
smooth analytical fit to the overall pulse shape. According to Giri [9], a reasonable 
representation of such a pulse is given by the expression 

( ) ( ) ( )oV ( ) V 1 0.5 erfc  u ( ) 1 0.5 erfc  u
s

f

t t
t s s

p s s
r r

t t t tt e t t t t
t t

π π
� �−−� �� �
� �

� 	� 	� � � �− −= + Γ − − − + − −
 �
 �� � � �

 �� � � �� � 

 (2) 

where erfc (.) denotes the complementary error function and u(.) is the unit step (Heaviside) 
function. Using this equation, it is found that the following parameters provide a good fit to the 
PBG 1 pulser waveform: 

Vp = 7 (kV) – peak value of waveform 
Γ = 0.02 – amplitude adjustment parameter 

τr = 100 (ps) – waveform rise parameter 
τf = 4.255 (ns) – waveform decay parameter 

τs = 0.1 (ns) – time shift for t = 0 
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 Figure 3 shows the resulting analytical pulser waveform, as given by Eq.(2), and this 
waveform will be the excitation for all transient calculations in this report. 

 

Figure 3. Analytical representation of the PBG-1 pulser waveform as provided by Eq.(2) 
with a risetime of 100 ps and FWHM = 3 ns. 

 The frequency domain spectrum of the waveform in Eq.(2) can be expressed 
analytically as 

  ( ) ( )
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A plot of the magnitude of this spectrum is provided in Figure 4. Note that this excitation has 
significant spectral components to about 4 GHz. 
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Figure 4. Plot of the spectral magnitude of the excitation voltage waveshape of Figure 3. 

 

2.3 Determination of the Radiated EM Fields 

 A recent Russian paper [10] has developed an analytical expression for the near- and 
far-field transient E-field produced by an IRA fed by a two-arm feed structure, as shown in 
Figure 5. The advantage of this analysis is that the transient E-field is given directly in terms of 
the antenna geometry and the transient pulser voltage waveform without the need for Fourier 
transforms applied to an antenna spectral response. In addition, the Russian results are valid for 
both on-axis and off-axis observation locations, as long as the observation point lies within a 
cylindrical region extending from the dish edge in the boresight direction. 
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Figure 5. Illustration of the radiation mechanisms in an IRA fed by a two-arm 
transmission line. 
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 For the IRA having a dish diameter D, focal length F, feed arm length L and feed arm 
angle β as shown in Figure 6, reference [10] provides the expression for the on-axis transient 
Ey field component as 

 ( )
2

2

2

( / / )( / ) sin sin sin
1 cos 1 cos1( ; )

2 ( / / )4 ( 2 / / ) (2 2cos )
z

g

V t L c r cV t r c
r r

E r t
f V t L c r cV t F c r c

D D
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β β γ

π
γ

� �� 	− −− +−� �
 �+ + −� �
 �� = � �
− −− −� �� 	− − +� �
 �� � �

 (4) 

 In this equation, r is the distance from the source feed of the antenna to the on-axis 
observation point, γ and r2 are the angle and distance, respectively, from the antenna dish edge 
to the observation point, and V (t) is the transient voltage applied across the feed arms of the 
antenna. The term fg = Zf / Zc, where Zf is the characteristic impedance of the feed arm 
structure (typically 400 Ω) and Zc = 120π is the free-space wave impedance. Thus, for this 
antenna, fg = 1.06. 
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Figure 6. Geometry of the two-arm IRA with pertinent parameters for computing the 
on-axis field. 

 The actual antenna to be used in the scattering measurements is a variation of the two-
arm antenna of Figure 6, in that it has a four arm feed. This feed consists of two 400 Ω feed 
arms in parallel, each rotated approximately 45 degrees relative to the position shown in Figure 
6. The resulting feed structure is shown in Figure 7 and the parallel combination of these feed 
arms presents an input impedance of 200 Ω at the effective feed source at the focal point of the 
reflector. 
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Figure 7. The IRA excited by a four-arm feed structure. 

 The radiated field for the four arm IRA may be calculated from the two arm result by 
multiplying Eq.(4) by a factor of 2 , which is simply the vector sum of the fields from a pair 
of orthogonal feeds [11]. This accounts both for the presence of the two separate feed arm pairs 
and the fact that they are rotated spatially. In doing so it must be recalled that the transient 
voltage V (t) in Eq.(4) is the applied voltage across the dish reflector.  

 The pulser source has an unbalanced coaxial output and produces an output voltage 
Vo(t) in a 50 Ω load,. To connect this 50 Ω source to the balanced 200 Ω input of the IRA, a 20 
Ω to 200 Ω balun is used. As shown in Figure 8, this balun consists of two 100 Ω coaxial 
cables connected in parallel at the pulser end and in series at the IRA feed end. With this balun, 
the effective driving voltage placed across the IRA feed arms is twice the pulser voltage: 
V(t) = 2 Vo(t). Reference [7] provides additional information on the design and operation of 
this type of balun. 
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Figure 8. Details of the 50 ΩΩΩΩ to 200 ΩΩΩΩ balun connecting the pulser source to the IRA 
feed structure. 

 For the IRA with four feed arms and the balun feed, the on-axis E-field produced by the 
applied pulser excitation is given from Eq.(4) with appropriate factors of 2 and 2  included as 

 ( )
2
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. (5) 
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2.4 IRA Radiated Fields 

2.4.1 Transient Responses 

 For the pulser excitation of Figure 3, the transient, on-axis E-field for the 0.4699 meter 
diameter IRA has been calculated using Eq.(5). Figure 9a and 9b present the transient E-field 
responses at different ranges. Note that the range r is defined at the distance from the IRA 
source feed to the field observation point, as shown in Figure 2. In this case, the angle θ = 0o, 
as the observation point lies along the z axis. 

 It is noted that far from the antenna, the E-field amplitude is decreasing as 1/r. Figure 
10 plots the maximum E-field arising from the impulse-like peak as a function of range. In this 
plot it is evident that for distances greater that about 3 or 4 meters, the fields do indeed have a 
1/r fall off.   

 Another indicator of the antenna performance is to compute the transient “far-field 
gain” of the antenna, defined as the peak value of rEy(t)/Vo, where again, Vo is the peak value 
of the applied pulser voltage. This quantity has been calculated for the IRA, and the plot of this 
gain parameter is shown in Figure 11. 
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Figure 9. Plots of the on-axis transient E-field for different ranges r from the antenna. 
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Figure 10. Plot of the peak E-field as a function of range r from the IRA. 
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Figure 11. Plot of the peak normalized E-field rE/Vo as a function of range r from the 
IRA. 
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 In ref [8] there are closed form and simple expressions for the peak prepulse and peak 
impulsive waveform amplitudes. For the peak prepulse we have (from Eq. 5.38 of [8])  

Prepulse:             
2 1 2

4 2
o

peak
g

V DE
r f Fπ

≈    (V/m)        (Valid for all r) (6) 

and the peak impulse (from Eq. 5.39 of [8]) is given by 
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),( ≈      (Valid in the far field) (7b) 

 In these expressions, recall that 2Vo is the peak voltage applied across the IRA dish 
(twice the peak pulser voltage, due to the voltage doubling effect of the balun), ∂Vo/∂t⏐peak is 
the peak rate of rise of the pulser source voltage and r is the distance between the IRA and the 
field observation point. The parameters D, F and fg have been defined previously. 

 Applying Eq.(6) to the specific IRA geometry under consideration here for an 
observation point at a distance of r = 4 meters yields a prepulse amplitude of 387 V/m, while 
the transient analysis shown in Figure 9 provides a prepulse of 383 V/m – about a 1% 
difference. Similarly, at the same distance Eq.(7) provides a peak impulse E-field of 5815 V/m, 
while the present analysis yields 5424 V/m.  This amounts to about a 6.7 % difference2. 

2.4.2 Spectral Responses 

 Taking the Fourier transform of the waveforms of the on-axis fields in Figure 9 yields 
the spectral responses of the waveforms, which are denoted as Erad(f). Figure 12 presents the 
plots of these spectra as a function of frequency for different ranges from the IRA. 

 Also of interest is the antenna transfer function that relates the radiated E-field 
spectrum at a distant point to the spectrum of the pulser excitation. For convenience, this 
transfer function can be normalized by the range r and the phase function relating to the 

                                                 
2 It should be pointed out that these calculations use an idealized rate of rise of the pulser voltage, dVo/dt., which 
is estimated from the pulser waveshape as applied to a 50 Ω load. In the physical IRA, the fast rising pulser 
waveform is applied to the balun, and the rise time of the output voltage that is ultimately launched onto the IRA 
reflector is degraded. Consequently, it is estimated that the actual IRA peak E-field levels could be about 50% of 
those calculated here with the unperturbed pulser risetime.  
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propagation time from the IRA source to the observation location. It is defined by the unit-less 
function TIRA (r, f ) as 

  
)(

4
22

)(
),(

),(

farfieldtheinValide
fc

Dj

e
fV

frEr
frT

jkr

g

jkr

o

rad

IRA

π
ω

≈

=
 (8) 

where k = 2π f /c is the wave propagation constant in free space. 

 Figure 13 presents a plot of the magnitude of this transfer function. Most notable is the 
fact that the overall behavior of the function is approximately proportional to frequency in the 
far field, which suggests that the radiated field appears like the derivative of the applied 
voltage. That this behavior is correct can be verified both analytically and numerically. This 
transfer function will be useful not only in calculating the radiated field from the IRA for 
arbitrary excitations, but also in computing the received signal from the IRA, as will be 
discussed in Section 2.5. 
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Figure 12. Plots of the spectral magnitudes |Erad(f)| for the on-axis radiated field, shown 
as a function of frequency for different ranges from the IRA. 
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Figure 13. Plots of the transfer function magnitudes |TIRA| = |rErad(f)/Vo(f)| for the on-
axis field for different ranges from the IRA 

 

2.4.3 Spatial Extent of the Radiated IRA Fields 

 As the goal of this work is to estimate the received signal from the IRA, when it is used 
to illuminate a distant scattering body, it is important to understand the spatial behavior of the 
radiated IRA field in the vicinity of a potential scatterer. As the simplest scattering calculations 
assume an incident plane wave excitation, if the spatial behavior of the IRA field differs 
significantly from a plane wave, then a more complicated, non-plane wave scattering model 
must be developed. 

 To investigate this issue, the transient E-field in a 4m × 4m plane at a range of 4 meters 
was calculated, and the peak value extracted from the transient field. The geometrical 
configuration for this calculation is shown in Figure 14. 

 As the physical extent of the observation plane is larger than the range of validity of the 
off-axis computational model of [10], an alternate off-axis model has been used. This model is 
described in ref. [12] and involves determining the EM field distribution in the parabolic 
reflector aperture and then integrating over this aperture distribution to determine the radiated 
field. In addition, the radiation contributions from the currents flowing on the feed arms are 
included, thereby providing the pre-pulse contribution to the radiation. A comparison of the 
results from this aperture integration model with those from [10] shows excellent agreement. 
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Figure 14. Illustration of the IRA antenna and a field observation plane at a distance r = 
4 m. 

 Figure 15 presents surface and contour plots of the peak radiated E-field from the IRA 
as fed by the Kentech PBG 1 pulser.  For this calculation the peak pulser voltage was ½ the 
normal pulser level (e.g., Vo = 3.5 kV instead of 7 kV). As a consequence, the peak value of 
the field along the boresight direction is about 2.7 kV/m, instead of the 5.4 kV/m shown in the 
transient response in Figure 9. 

 The contours in Figure 15 are in 5% increments of the peak value. The innermost 
circular region in the contour plot represents the spatial area where the incident IRA fields are 
approximately constant (within 5%). As a consequence, the incident IRA field in this region 
can be considered reasonably planar. This region is roughly a circle with a radius of about 20 
cm.  Any scattering object that fits into this region can be considered as being illuminated by a 
plane wave from the IRA. 
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Figure 15. Plot of the peak E-field amplitude for the IRA at a distance of 4 meters. (Note 
that for this calculation, the peak pulser voltage was ½ the nominal value of 7 kV (e.g., 
Vo = 3.5 kV.) 
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2.5 IRA Operating in the Reception Mode 

 For the case of reception of EM signals by the IRA, it is convenient to consider the 
problem in the frequency domain, rather than directly in the time domain as was done for the 
radiation problem in Section 2.4. 

 The approach for determining the reception property of the IRA is to use the reciprocity 
theorem [13] which relates the transmitting properties of the antenna to the reception 
properties. In doing this, the antenna transmission or reception problem is regarded as a linear 
two port network, as shown in Figure 16. In this representation, port a represents the driving 
terminals of the antenna (e.g., the excitation point between the transmission line arms feeding 
the antenna) and port b denotes a far-field observation point where the scattering body is 
located. 
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Linear 2-Port
+

-

+

-
Port a Port b

 

Figure 16. Representation of the antenna as a linear two-port network. 

 For this two port network, one can envision two separate cases involving different 
excitations or loads applied to terminals. Case 1 has terminal parameters 1 1 1 1, , anda b a bV V I I   
and case 2 has parameters 2 2 2 2, , anda b a bV V I I . Then, according to the reciprocity theorem, these 
parameters are related by the expression 

  V I V I V I V Ia a b b a a b b1 2 1 2 2 1 2 1+ = +  (9) 

where a and b denote the two ports of the network, and 1 and 2 refer to the different source 
configurations.  

 Various versions of Eq.(9) can be useful in special cases of the two-port excitation. 
Consider the source configurations shown in Figure 17 with Ib1 = 0 in case 1 and Va2 = 0 in 
case 2. In this case, the reciprocity relation in Eq.(9) becomes 

  
V
V

I
I

b

a

a

b

1

1

2

2
= − . (10) 

 This last equation forms the basis for computing the reception properties of the IRA. 
Case 1 is the antenna transmission case, where a voltage source Va1 = Vo(f) is applied to the 
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antenna, and a far-field voltage Vb1 is detected at the observation point. Note as this voltage is 
an open-circuit quantity, Ib1 = 0 as required. This voltage is defined as 

  1
rad

bV E d= − � , (11a)  

And upon substituting Erad from Eq(8), Vb1 may be expressed in terms of the antenna radiation 
transfer function TIRA as 

  1 ( )jkrIRA
b o

TV e V f d
r

−= − � , (11b)  

 Case 2 represents the antenna reception problem, in which a distant current source Ib2 
radiates an EM wave towards the antenna and ultimately a short-circuit current Isc = Ia2 is 
induced in the antenna terminals. Because the terminal a is short circuited, Va2 = 0 as 
previously noted. The goal in this use of the reciprocity theorem is to determine Isc. 
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Figure 17. Application of the reciprocity theorem to the transmitting antenna (Case 1) 
and the receiving antenna (Case 2). 

 With Eq.(11b) substituted into Eq(10) the reciprocity relationship becomes 
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and upon solving for the desired short circuit current and clearing terms, we have 
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 Normally, we wish to relate the induced short-circuit current in the reception case to an 
incident EM field Eex exciting the IRA, instead of to the current element strength in the far 
field, 2bI d� . To do this, we recall the expression for the E-field radiated by a point dipole 
moment I d�  from ref.[14] as 
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where oμ is the free space permeability. Substituting into Eq.(13) the quantity Id�  expressed in 
terms of the excitation E-field from Eq.(14) gives the desired expression for the short-circuit 
current as a function of the incident E-field on the IRA: 
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 In some cases, the open-circuit voltage induced in the antenna is of interest, especially 
if the antenna response is to be measured with a high impedance measurement device. In this 
case, we can perform a Norton to Thevenin transformation of the induced antenna current 
response to obtain the open circuit voltage as 
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Here, Zin is the input impedance of the antenna, as seen at its open circuit terminals. For the 
present IRA, this impedance is approximately 50 Ω. 

 Equation (16) serves to define the equivalent height of the antenna: 
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Using the computed antenna transfer functions TIRA shown in Figure 13, the equivalent heights 
of the IRA as a function of frequency for different locations of the source producing the 
incident field are shown in Figure 18.  

 Note that for the sources located closer than about 3 meters (in the near field) the 
equivalent height varies with the source position. For more distant sources, the incident 
excitation E-field is nearly planar and the equivalent heights are essentially independent of the 
position of the excitation source. For distant sources, the equivalent height of this particular 
IRA is seen to be roughly a constant 0.16 meters, from 200 MHz to well over 1 GHz.  

 When the scattering object is a distant source, one can use the far field approximation 
given in Eq.(7b) in Eq.(17), which leads to 
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This is in agreement with the numerically computed value in Figure 18. 

 The fact that this function is similar to a constant for a very wide frequency range 
suggests that the received open circuit voltage waveform will be very similar to the waveform 
of the excitation E-field on the antenna. 
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Figure 18. Plot of the equivalent height of the IRA as a function of frequency for different 
locations of the source producing the incident field. 

2.6 EM Scattering by Distant Objects 

 We now express the excitation E-field at the IRA in the reception problem to the 
voltage excitation source for the antenna operating in the transmit mode. As noted in Figure 2, 
when the distant scatterer is illuminated by the incident field produced by the IRA, a portion of 
this signal is reflected and propagates back to the IRA. The strength of this reflected signal 
depends on the shape and orientation of the scatterer and also is a function of frequency. For a 
linearly polarized (Ey) incident field, the y-component of the reflected field can be described 
by a scattering coefficient Γ (r, f) as 

  rad
y

ex
y EfrE ),(Γ=   (18) 

 In this equation, Erad is the IRA-radiated E-field at the scattering body and Eex is the 
scattered field evaluated back at the IRA which serves to excite the antenna in its receiving 

10 m 

0.2 m 
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mode. As a consequence, the coefficient Γ is expected to have a /jkre r−  functional dependence 
on the range. 

 Determination of Γ can be a complicated process and usually it involves numerical 
methods, the choice of which depends on the type of scatterer involved. Possible numerical 
solutions include the use of the electric field integral equation (EFIE), the magnetic field 
integral equation (HFIE), finite difference time domain (FDTD), and various analytic 
solutions. Additional information about these solution methods will be presented in the next 
section containing examples of IRA scattering responses. 

 With the scattered field defined via Eq.(18), the end to end expression relating the 
received open-circuit voltage to the pulser excitation can be developed. Substituting (18) into 

Eq.(16) and making use of the fact that ( ) ( )
jkr

rad
IRA o

eE f T V f
r

−

=  from Eq.(8), we obtain the 

final expression for the spectrum of the open circuit voltage of the IRA: 
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 Given the spectrum of the pulser voltage in Figure 4, the IRA radiated transfer function 
plotted in Figure 13 and the calculated scattering parameter Γ, the open circuit voltage 
spectrum may be evaluated with the above equation. The transient response may then be 
computed by an inverse Fourier transform. 
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3. Illustration of Computed Scattering Responses 

 In this section, a number of different scattering objects are considered for illumination 
and subsequent reception of the backscattered signal from the 0.47 meter IRA. The scatterer is 
located in the boresight direction of the IRA at a distance of 4 meters from the IRA feed-arm 
apex to the center of the scattering body (See Figure 1).  We intend to perform the 
measurements at this scatterer / target distance of 4m for the canonical scatterers considered in 
this section.  As noted in Section 2.4.3 the physical extent of the scatterer is constrained to lie 
within a region having a radius of about 20 cm for the incident field from the IRA to be 
approximately planar. 

 The radiated E-field from the IRA illuminating the various scatterers is the field 
calculated for a range r = 4 meters, as shown in Figure 9. This waveform, which is referred to 
as Erad in this document, is reproduced on a more convenient scale in Figure 19 below. 
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Figure 19. Radiated E-field Erad at a distance of r = 4 meters used for all scattering 
calculations. 

 The corresponding spectral amplitude for this waveform (shown previously in Figure 
12) is presented here in Figure 20, and the field transfer function magnitude |TIRA| = 
|rErad(f)/Vo(f)| needed for the scattering calculations in Eq.(19) is given in Figure 21. Of 
course, when Eq.(19) is evaluated, the entire complex-valued transfer function is used, not just 
the magnitude. 
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Figure 20. Spectral magnitude of the radiated E-field Erad at a distance of r = 4 meters. 
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Figure 21. Plot of the field transfer function magnitude |TIRA| = |rErad(f)/Vo(f)| for the on-
axis field for range r = 4 m. 
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3.1 An Infinite Plate Scatterer 

 Perhaps the simplest scattering body is a perfectly conducting, infinite plate located 
directly in front of the IRA, as shown in Figure 22. Because this scatterer is extended in space, 
it cannot be viewed as a simple point object. As a consequence, we do not expect that the 
scattered field back at the IRA source will have a 1/r2 amplitude fall-off relative to the radiated 
field. (Recall that there is a 1/r term in the field radiated from the IRA and another 1/r term in 
the reflection coefficient of Eq.(19). 

 Using image theory, the scattered field at the IRA that results from a reflection in the 
conducting plate can be thought of as arising from an image of the IRA with its voltage 
excitation source reversed in polarity, as suggested in Figure 22. Clearly, the EM field 
launched from this image and propagating toward the real IRA will have a 1/2r fall-off, not a 
1/r2 behavior.  Consequently, the reflection coefficient Γ for this plate will be  

  1
2

jkre−Γ = − . (20) 

When this coefficient is used in Eq.(19) we note that the field will have the proper phase, fall-
off with distance, and the required change in amplitude due to a reflection from the perfectly 
conducting plate. 
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Figure 22. The IRA illuminating an infinite plate, with its image in the plate shown. 

 For this particular scatterer, a plot of the reflection coefficient Γ as a function of 
frequency is rather uninteresting, as its amplitude is simply a constant equal to 0.5. 
Furthermore, the spectral magnitude of the received E-field back at the IRA is just a factor of 2 
smaller than that in Figure 20. Additionally, the transient behavior of this received E-field will 
be that of Figure 19, flipped in sign and scaled by a factor of two. Plots of these fields for the 
present case are not provided. 
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 Evaluating Eq.(19) for this case with the reflection coefficient in Eq.(20) provides the 
open-circuit voltage spectrum at the IRA terminals for the wire scatterer. This is shown in 
Figure 23. The transient response for Voc is presented in Figure 24. Note that the statement is 
often made that “the received transient signal of the IRA has the same time history as the 
incident E-field exciting the antenna”. This statement is not strictly correct, as can be seen by 
comparing the waveform in Figure 19 (scaled by -0.5) with that of Figure 24. The waveforms 
are similar, however. 

0.01 0.1 1 10
1 .10 9

1 .10 8

1 .10 7

Frequency (GHz)

Vo
c(

f) 
  (

V/
H

z)

 

Figure 23. Spectral magnitude of Voc received by the IRA for the infinite plate scatterer 
at a distance of r= 4 m. 
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Figure 24. Transient Voc received by the IRA for the infinite plate scatterer at r= 4 m. 



 28

3.2 Wire Scatterers 

3.2.1 Single Thin Wire, Broadside Incidence 

 The second example of the scattered field reception of the IRA is provided by 
examining the response of a thin-wire scatterer located parallel to the radiated E-field from the 
IRA (in the y-direction shown in Figure 2.) For this calculation, the length of the wire is L = 25 
cm, and the radius is a = 0.1 cm. As shown in Figure 25 the center of the wire is located on the 
boresight direction and the incident field is tangential to the wire. 
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Figure 25. A thin-wire scatterer illuminated by the IRA. 

 To determine the scattering coefficient Γ(r, f) for this wire, an integral equation 
approach is used [15]. In this method, the following equation is developed for the unknown 
current I(ζ) flowing in the wire, which is induced by the incident field from the IRA: 
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where the distance R is given by 

  2 2( ')R aζ ζ= − + . 

 The solution for the current in Eq.(21) can be determined using the method of moments 
described by Harrington [16], and once this current is known, the scattered E-field back at the 
IRA can be obtained by integrating over the wire current distribution as [14]. 
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 The scattering coefficient is then calculated as 
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and this is used in Eq.(19) to compute the open circuit voltage spectrum of the received signal 
at the IRA terminals. 

 Before proceeding with the illustration of the wire responses, however, it is useful to 
check the numerical solution used for the wire scatterer, which was implemented in MathCAD.  
For a thin wire of length L and radius a = L/148.4, Harrington [16] computes and plots the 
normalized backscatter cross-section for broadside incidence as 
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E
σ π= . (24) 

 Figure 26 provides a comparison of this scattering cross-section for this particular wire 
using the present MathCAD computational model (a) and the numerical values reported by 
Harrington (b). Note that these are plots of normalized cross-sections σ/λ2 and are plotted as a 
function of normalized frequency L/λ = Lf/c . As may be seen from these plots, the results are 
identical. 
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(a) Present calculation                                                  (b) Harrington [16]. 

Figure 26. Comparison of the normalized backscatter cross-section for the wire for 
broadside incidence. 
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 From the integral equation solution for the thin-wire current, the scattered field has 
been calculated and the scattering coefficient rad

Y
ex
y EEfr /),( =Γ  is plotted in Figure 27. 

Multiplying this scattering coefficient by the radiated field spectrum in Figure 20 yields the 
spectrum of the returned field that excites the IRA in the receiving mode. This spectrum is 
shown in Figure 28.  Taking the Fourier transform of this latter spectrum provides the transient 
Eex field that excites the IRA. This is shown in Figure 29. 
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Figure 27. Plot of the magnitude of the scattering coefficient ΓΓΓΓ(f,r) for the thin wire at a 
range of 4 meters. 
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Figure 28. Plot of the magnitude of the E-field scattered from the wire and exciting the 
IRA in receive mode. 
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Figure 29. Transient response of the Eex field received at the IRA for the thin-wire 
scatterer at r= 4 m. 

 Evaluating Eq.(19) with all of the appropriate spectra provides the open-circuit voltage 
spectrum at the IRA terminals for the wire scatterer. This is shown in Figure 30 and the 
corresponding transient response for the IRA Voc is presented in Figure 31. 
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Figure 30. Spectral magnitude of Voc received by the IRA for the thin-wire scatterer at r= 
4 m. 
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Figure 31. Transient Voc received by the IRA for the thin-wire scatterer at r= 4 m. 

 As a final check of the numerical solution for the scattering, the Numerical 
Electromagnetics Code (NEC) [17] was used to solve the integral equation (21) and compute 
the scattered field (22). The resulting Voc at the IRA is shown in Figure 32, and this is virtually 
identical with the MathCAD results of Figure 31 
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Figure 32. Transient Voc received by the IRA using calculations from the Numerical 
Electromagnetics Code (NEC). 



 33

3.2.2 Single Thin Wire, Varying Angle of Incidence 

 Another interesting thin-wire case is when the thin wire is inclined relative to the 
boresight direction from the IRA. Considering the wire to lie in the y-z plane and inclined by 
an angle θ , as shown in Figure 33, the received Voc waveforms and spectral densities have 
been computed for different angles of illumination, ranging from the wire being illuminated 
broadside (θ = 0o, as in the previous section) to nearly end-on incidence (θ = 75o). 
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Figure 33. Geometry of the thin-wire scatterer at an inclined angle, θθθθ. 

 Figure 34 presents the transient responses for the varying angles of incidence. It is 
noted that in the broadside direction (θ = 0o), the Voc waveform has the large impulse-like 
spike in the response. For other angles of incidence, this spike is largely missing. Figure 35 
presents the spectral magnitudes for Voc for these cases. 
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Figure 34.  Plot of the transient Voc response for the thin-wire scatterer of length L = 0.25 
m for different angles of incidence. 
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Figure 35.  Plot of the spectral magnitude |Voc(f)| for the thin-wire scatterer of length L = 
0.25 m for different angles of incidence. 

3.2.3 Multiple Wires 

 It is also of interest to examine the effects of having a scattering target consisting of 
two thin wires. Consider the case of two identical length wires (L = 25 cm, a = 0.1 cm), 
separated by a distance d, which is varied.  
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Figure 36. Scatterer configuration of two equal length wires, separated by a distance d. 
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Figure 37. Transient Voc responses for the two-wire scatterer of Figure 36, for different 
values of d. (The case of d = none refers to wire 2 being absent.) 
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Figure 38. Spectral magnitudes of Voc for the two-wire scatterer of Figure 36, for 
different values of d. 

d = 20 cm 

d = none 

d = none 



 36

 In these plots, it is clear that the returned signal is greater for two wires than for a single 
wire (the red curve.)  While both wires have the same length and the same resonant frequency 
if the wires are isolated and in free space, there is a mutual interaction between the two when 
they are close together. This interaction increases as the distance between the two decreases. 
The amplitudes for a single wire and 2 widely separated wires are roughly a factor of two 
different. 

 A variation of the previous two-wire geometry is shown in Figure 39, where the wires 
have a different lengths, but the distance between the is constant. In the following calculations, 
L1 = 25 cm as before, d = 10 cm, and L2 is variable. As before, the wire radii are equal to 0.1 
cm. 
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Figure 39. Scatterer configuration of two different length wires, separated by a constant 
distance d. 

 Figure 40 shows the transient responses for this wire configuration, as the length of 
wire 2 varies from 25 cm to 10 cm. Figure 41 shows the corresponding spectral magnitudes. 
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Figure 40. Transient Voc responses for the two-wire scatterer of Figure 39, for different 
values of wire 2 length, L2 (d = 10 cm). 
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Figure 41. Spectral magnitude of Voc for the two-wire scatterer of Figure 39, for different 
values of wire 2 length, L2 (d = 10 cm). 
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3.3 Spherical Scatterer 

 Because the EM scattering can be calculated analytically, a spherical scatter is 
commonly used as a test case for checking computations and for calibrating test ranges. A 
possible geometry for the IRA measurements is shown in Figure 42, where the sphere has a 
radius of a = 5 cm. The sphere is located with its center at a distance of 4 meters from the IRA. 
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Figure 42. Scattering geometry for a sphere of radius a. 

 To compute the scattering coefficient for the sphere, the classical Mie series for the 
scattering is used [18]. For an incident E-field propagating in the z direction and with a 
polarization in the x direction, as portrayed in Figure 43, the q component of the scattered E-
field at a far-field observation point defined by the parameters (r, θ and φ) can be written as an 
infinite sum 
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Where the terms an and bn are given by  
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In these expressions above, (2)( ) and ( )n nj ka h ka are spherical Bessel and Hankel functions, and 

( )1 cosnP θ  is the associated Legendre polynomial. 
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Erad
 

Figure 43. Illustration of a sphere illuminated by a x-polarized plane-wave E-field 
propagating in the z direction. (From [18].) 

 In examining the geometry of Figure 42, we note that the scattered field back to the 
IRA is given by 

  sca ex
xE E E θ πθ

φ π
=
=

= = . (27) 

Evaluating Eq.(25) for θ = π and φ = π and r = 4 m, thus provides the scattered field at the IRA 
and the reflection coefficient for the sphere.  To check the calculation of the sphere scattering, 
Harrington [18] has provided a plot of the scattering cross-section defined in Eq.(24) 
normalized by the wavelength squared.  A comparison of his results with those obtained by the 
present MathCAD calculation is shown in Figure 44. The agreement is again excellent. 
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             (a) Present calculation                                    (b) Harrington[18]. 

Figure 44. Comparison of the normalized backscatter cross-section for the sphere. 

 The following plots present scattering data for the 5 cm sphere. This is in the same 
format as done for the single thin-wire in Section 3.2.1. 
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 Figure 45 shows the plot of the magnitude of the scattering coefficient Γ(r, f) for the 
sphere at a range of 4 meters and from this, the spectrum of the received E-field at the IRA is 
calculated. This spectrum is presented in Figure 46. The corresponding transient response of 
this scattered field at the IRA is shown in Figure 47. 

 Figure 48 plots the spectral magnitude of Voc induced in the IRA for the spherical 
scatterer and the corresponding transient response is shown in Figure 49. 
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Figure 45. Plot of the magnitude of the scattering coefficient ΓΓΓΓ(r, f) for the spherical 
scatterer with radius of 5 cm.  
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Figure 46. Plot of the magnitude of the E-field scattered from the sphere and observed at 
the IRA. 
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Figure 47. Transient response of the Eex field received at the IRA for the spherical 
scatterer of radius 5 cm. 
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Figure 48. Spectral magnitude of Voc received by the IRA for the spherical scatterer. 
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Figure 49. Transient Voc received by the IRA for the spherical scatterer of radius 5 cm. 

 It is useful to consider the scattering responses for several spheres of different radii. To 
this end spheres with radii varying from 1 cm to 20 cm were analyzed and the results are 
presented below. Figure 50 plots the transient Voc for the IRA for different sphere radii, and 
the spectral magnitudes are given in Figure 51. Note that as the sphere gets larger, so does the 
response, as is expected. 
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Figure 50. Plot of the transient Voc at the IRA for a sphere at range r =4 m with a 
variable radius a. 
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Figure 51. Plot of the spectral magnitude for |Voc| at the IRA for a sphere at range r =4 m 
with a variable radius a. 
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3.4 Box Scatterer 

 Another canonical scatterer is a small rectangular conducting box having a side 
dimension a. This is shown in Figure 52. For this calculation, the box was modeled using the 
surface patch capacity in NEC [17]. 
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Figure 52. The IRA illuminating a small rectangular cube of side dimension a. 

 Figure 53 presents the scattering coefficient Γ for a 10 cm box at a distance of 4 meters. 
Initially, its scattering behavior is similar to that of the sphere (in Figure 45), but after a few 
oscillations at high frequencies, the scattering appears to be continuing to grow, while that of 
the sphere oscillates around a limit value. Most notable in this curve are the resonances at the 
higher frequencies. A close examination of these spikes shows that they are occurring at the 
internal resonant frequencies of the box and are an unwanted artifact in the numerical solution 
of NEC.  This is a well-known phenomenon and its thorough discussion is beyond the scope of 
the present note. 
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Figure 53. Plot of the magnitude of the scattering coefficient ΓΓΓΓ(r, f) for the box with a = 10 
cm. 
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 Figure 54a illustrates the range of transient Voc responses for three different box sizes 
at the range of 4 m from the IRA. Note that the effects of the numerical “noise” introduced in 
the NEC solution by the internal box resonances is most pronounced in the large, 20 cm box. 
Nevertheless, a rough indication of the peak values of the expected received voltage is 
provided. In this plot, the details of the induced voltage for the small 5 cm box is difficult to 
see, so this waveform is re-plotted in part b of the figure. 

 The Fourier transform of these transient waveforms provides the spectra of the Voc, and 
there are provided in Figure 55. 
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(a)  The Voc waveforms for three box sizes. 
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(b)  Voc waveform for the 5 cm box. 

Figure 54. Plot of the transient Voc at the IRA for different boxes at range r =4 m. 
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Figure 55. Plot of the spectral magnitude for |Voc| at the IRA for different box scatterers. 
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4. Summary 

 Using a simple model for calculating the radiated EM field from a 46 cm IRA, the 
backscattered field for a number of canonical scatterers at a distance of 4 meters from the 
antenna has been calculated. These backscattered fields are assumed to be received by the same 
IRA and result an open circuit voltage response of the antenna. Details of the spectral and 
transient responses for these induced voltages are examined, and for the transient responses, 
the approximate peak values of the impulse-like contribution to the waveforms are 
summarized in Table 1.  

Table 1. Summary of peak values of Voc for different scattering bodies. 

Scatterer Approximate Peak Voc (V)  

Infinite Plate 400 

Thin wire (25 cm) 7 

Two thin wires (25 cm) 14 

Sphere (5 cm radius) 5 

Sphere (20 cm radius) 20 

Box (5 cm side) 2 

Box (20 cm side) 22 
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