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Abstract

This is the first in a series of notes on the calculation of inductance. This note deals with the
calculation of the inductance of a circular coil consisting of any number of coaxial turns; each
individual turn may consist of any wire size and of any spacing to the adjacent turns. Future
notes will deal with the calculation of the inductance of various geometric configurations as
found in Grover's classic book"” The advantage offered by the method in these notes is the
elimination of the tedious interpolations from tables as used in Grover. Future notes will also
detail the calculation of air core transformer self and mutual inductance for several
configurations. The calculation of current distribution and the effect on inductance will also be
included.

The calculation of the inductance of a circular coil is accomplished using MATHCAD PLUS 6.0.
In-order to use the calculation method herein one must have a registered version of MATHCAD
PLUS 6.0 or higher from MathSoft Inc. Cambridge, Massachusetts. Other computational
mathematics programs can also be adapted to the formulation. The basic physics of the
inductance calculations relies heavily on Smythe’. The coil consists of coaxial turns of round
cross-section wire. Each turn may have a different wire size, turn diameter and spacing from
adjacent turns. The procedure determines the complete symmetric inductance matrix, which
consists of the self-inductance's of each turn as the main diagonal and all of the mutual
inductance's between the turns as the symmetric elements. The total inductance of the coil, that
is the inductance of all of the turns connected in series, is the sum of all of the matrix elements.
A special case is the single layer solenoid.

' Grover, Frederick W., "Inductance Calculations, Working Formulas and Tables", Dover

Publications, 1962.
2 Smythe, William R., "Static and Dynamic Electricity", McGraw-Hill , 1968.



INTRODUCTION —

The basic building block of a circular cylindrical coil is the single turn or loop of wire. To
evaluate the total inductance, the self-inductance of a loop is first determined as a function of the
wire diameter and the loop diameter. The coil consists of a number, N, of coaxial loops
connected in series. The mutual inductance's between all of the loops contribute to the total coil
inductance. A general expression for the mutual inductance between two coaxial loops as a
function of the mean diameters of the loops and the axial spacing is determined and this is used
to calculate the entire array of mutual inductance's between all of the coil's turns. In the general
case the cross-section of the coil may be of any shape, rectangular , etc. The simplest special
case is the single layer solenoid. As long as all of the turns are coaxial, the wire size and
diameter (radius) of each turn is specified, as well as the axial position of each turn; this method
can be used to calculate the total inductance. MKS units are used throughout; po = 41107,

1. Basic Theory. In general, the vector magnetic potential, A, at a point r from a current
element Ids is given by:

1 1ds

g S o

The mutual inductance between two circuits, 1 and 2, is defined as the flux, ®,,, through circuit

1 due to a unit current in circuit 2, or visa versa. The flux or B.n field integrated over the area of —
any closed circuit is equal to the line integral of the magnetic vector potential around that circuit.

The mutual inductance, M, is therefore given by3 :

2 Mp=My = B2 .rdSI = §A2 ® dSl

In principle equation (2) can be applied to any two circuits to obtain the mutual inductance or to a
single circuit to obtain the self inductance.

1.1 Mutual inductance between two coaxial loops. The special case of two coaxial
loops is illustrated in Fig.1*.

3 Smythe, op cit, p.333
* Smythe, op cit, p.290 and p.335
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Fig.1.1

Two Coaxial Loops of Radii al and a2
In the special case of Fig.1 the only component of the vector potential ,A¢ , at the point P on loop
b due to a current in loop a is independent of ®. Here z and al are constant because of the
coaxial location of the two loops. It is also assumed that the circuit, i.e. the current conductor, is
small compared to the dimension r or equivalently the current can be considered to be uniform
and therefor have an equivalent line location at the radius al. Under these conditions the
vector potential has only the component Ag and is given by:

ul alcos(0)do
220 [a1? +a2? +2% —2ala2 cos(9)

3 Ao =

Since Ag is the only component and is everywhere tangent to the loop radius a2, then by equation
(2) the mutual inductance M;, between two loops of radii al and a2 axially spaced at z;, is:

cos(9)d¢

) Mp= Hala2|

0 \/al2 +a2? +le2 —2ala?2 cos(¢)




Equation (4) can be rearranged and expressed in terms of complete elliptic integrals. However,
for design purposes it is far more convenient to let MATHCAD, or some similar program,
evaluate the integrals as required.

1.2 Self inductance of a loop of finite size wire. =~ Fig.2 is the diagram of a loop of
radius b made of wire with radius a and permeability |’ carrying a uniformly distributed total
current I. The total self inductance can be determined by evaluating the B field energy within
the wire plus the flux coupled to the inside diameter of the loop. The B field inside the wire is a
function of the radius and is given by:

u'rl

&) BO=  5p,?

The total inductive energy stored in the wire is given by:

@) Ly =

Fig. 1.2

Loop of radius b
of a conductor of
radius a




The total flux external to the conductor, i.e., the total flux contained within the radius b-a, is a
measure of the inductance component external to the conductor. This flux is evaluated by
equation (3). The vector potential component Ae evaluated at radius b-a and z=0 and
multiplied by the circumference, 2n(b-a), is the external flux by equation (2). Therefore the total
inductance of the loop is given by:

cos(¢)d¢
+(b- a)2 —2b(b-—-a)cos(¢)

b ﬂ
Lo=pi 7+ (ub(b=a))
® ) I

2. General Configuration of a _Coaxial Ceil. The general configuration of a coaxial coil is
shown in Fig.2.1. The coil consists of N total coaxial loops, each having a specified wire radius,
a, , a loop mean radius, b, , and an axial position z,. The axial position is only important in the
determination of the relative axial position's of the N loops, and therefore the reference for z is
not important; however it is usually convenient to use the left most loop as the origin.
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The basic definition of inductance referred to two terminals is expressed as:

E.
L1,2 = d;'Z

9) dt

Where: E;; is the total voltage at terminals 1-2 as a result of the unit time rate of change of
current passing through the terminals.

If we consider the general coil of Fig.2.1, the total voltage per unit time rate of change of current
consists of the total self-inductance's of the loops plus the sum of all of the mutual inductances.
Since M, = M,,, each mutual will appear twice in determining the total voltage. Thus the
total inductance of the coil is the sum of all of the elements in the inductance matrix as in
equation (10). The diagonal elements are the self-inductances of the loops as determined by
equation (8) and the symmetrical mutual inductances are determined by equation (4).

L] M1,2 Ml,n MI.N
(10) v vyM, L, M., M.,
2' Zl Ml,n M2,n Ln Mn.N

MI,N M2,N Mn.N LN

3. Examples of Some Special Cases.

3.1 Uniform Single Layer Solenoid. The simplest coil is a single layer solenoid with a
constant diameter, pitch and wire size. We take the total number of turns, N=25; the wire
radius, a=.001; the turn radius, b=.016; and the constant spacing between turns as .003. If we
take the first turn as the origin the axial position of each turn becomes, z,=0.003*(n-1). The
MATHCAD formulation and calculations are given in Appendix A. The result is an inductance
of 6.7913 microhenerys. This evaluation of inductance neglects the "cork-screw" nature of the
coil and the magnetic vector potential; and is therefore accurate only for small a small pitch
coil.

3.2 Non-Uniform Single Layer Solenoid. This example has a single layer; however, the
wire size, loop radius, and turn to turn spacing are all taken to be a function of the turn number,
N=44. The wire radius is defined as a, = .001 + .0002*(n-1). The loop or turn radius is taken to
vary linearly from .05 to .15 as, b, = 0.05 + 0.00232558*%(1-n). The turn position, z,, is taken to
vary as the square root of the turn number as, z, = .0025*(n-1)A.5. The MATHCAD
formulation and calculations are given in Appendix B. The result is an inductance of 378.122
microhenrys.
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3.3 Inductance of a Coil With Rectangular Cross-section.. The winding cross-section is
rectangular. The wire radius is a. There are NTpL turns per layer and NL layers. Thus the total
number of turns N, is equal to the product of NTpL and NL. The mean radius.of the inner most
layer is Radi. The center-center spacing between turns in a layer is Ah and the center to center
spacing between turns in adjacent layers is Av. The MATHCAD formulation and calculations
are given is Appendix C.

3.4 Inductance of a the General Case Coil Composed of Series Connected Coaxial Turns.
The general case of an inductance of a coil of series connected coaxial loops with the loops being
of different wire sizes, different radii, and located in various z positions, is shown in Fig.2.1.
The procedure for evaluating the inductance is no different in principle that the previous cases.
One need only specify the radii of the wires, a,; the radii of the loops, by; and the positions of the
loops on the axis, z,. If these array values cannot be generated by mathematical expressions they
can be assigned as individual array elements.

3.5 Inductance of Parallel Connected Loops . When two loops (or inductances) are
connected in parallel the resulting equivalent inductance may be evaluated as follows. The
circuit of the two loops in parallel is shown in Fig.3.5.1. The first derivatives of the branch
currents can be determined using Creamer's rule as:

i’ = e(IA$M12) l = e(L]:FMIZ)_
(11) " L L*M, * LL*M,

The equivalent inductance of the parallel connection, Ly, , is determined as:

L.= |e = L]L2¢M122
(12) "L+, Li+vL,F2M,
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APPENDIX A | —

Inductance Calculation of a Uniform Solenoid u =4-7-10°77
Number of Turns N:=25 "~ Radiusof Tun b :=.016
Radius of Wire a :=.001 Turn-turn Spacing d :=.003
T
Self-Inductance of each Loop Lo =p- §+ b-(b- a)- cos(¢) do
Jb2+ (b- )2~ 2:b-(b - a)-cos($)
0 :
n:=1.N
Axial position of each turn z =d(n-1)
v:=1.N w:=1.N
- 8 = |z .y ‘
Axial distance between v and w turns v,w v Tw
T
Mutual Inductance between v and w turns M = (v¢w)-p-b2- cos(e) do
2 2 2
j=1.N \/;b * (av,w) = 2:b%cos(¢) P
0 S
M. . =Lo
Jb
k:=1.N
Solenoid Diameter Dia :=2-b Solenoid Length Zn:=z
Dia =0.032 Zn =0.072
N N
Total Inductance Ltot := E E Mj «

Ltot = 6.7913-10 °



APPENDIX B

Inductance calculation of a single layer non-uniform pitch solenoid g4 1077
Number of Turns N:=44 '
n:=1.N

Wire Radii as a function of turn numbe_r a = .001 + .0002-(n-1)

Loop or turn radii as a function of turn number bn '=0.05 + .00232558:(n - 1)

Axial position of turn from first turn z_ :=.0025(n- )3
vi=1.N w=1.N
Axial distance between v and w turns sv,w = 'Zv - Zw’
b . T
_ | n . . cos(¢)
Self inductance of each turn L,=n 2 b, (bn - an) R ; -
J(ID) + (bn— an) - 2'bn-(bn- an)-cos(¢)
0
Mutual Inductance between v and w turns
n
- . cos(9)
j=1.N Mv'W .-(v¢w)-p,~bv-bw- do
2 2 2
/(bv) + (bw) + (av,w) -2:b b_-cos(¢)
0
M ;=L
bL =bl bR =bN
k=1.N
N
ZN = ;: z
q
q=1
Left End Radius  bL =0.05 Right End Radiuis bR =0.15 Length zN =0.47764
N N
Total Inductance Ltot = E E Mj ) .
j=1 k=1 Ltot =3.78122-10




APPENDIX C

~
Inductance Calculation of Coil with Rectangular Cross-section n =4.1:1077
Wire radius a:=.002 Turn Spacing center-center in layers Ah :=2-a+ .002
Number of Turns per Layer NTpL :=20 Number of Layers NL =5
Number of Turns N:=NTpL-NL Turn Spacing center-center between layers Av:=2-a+ .005
The axial coil lengthis  Lax :=(NTpL)-2-a Mean Radius of Inner Layer Radi :=.07
n=1.N ID :=2-Radi - Av
The radius of a turn as a function of the turn numberis b_:=Radi + Av- (ﬂoor<I:'1: i))
|2
OD = 2-bN + Av
The axial position of the turns as a function of the turn number is 2_:=Ah-mod(n - 1,NTpL)
v=1.N w:i=1.N Lax :=z_+ Ah
N
& = |z -z i
. . . v, W v w
The axial distance between turns v,w is
The self-inductance of each turn is b T cos(9)
A n
L =p —4—+bn-(bn—a) do
ﬁ b ~ 1 - 2-bn- (bn— a)~cos(¢)
The Mutual Inductance between tums v, and w is —
n
. cos(¢)
M, = (vEW)pb b - do
3= 2 2 2 . . -
j=1.N _— f(bv) + (b)) + (av,w) ~2:bb_-cos(¢)
i 0
k:=1.N N N
Lovs By @, M
Total Inductance is Ltot =0.00116
Inner Diameter ID =0.131  Outer Diameter OD =0.221 Length  Lax =0.12
~

10



