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In several computer-aided diagnosis (CAD) applications of image processing, there is no sufficiently sen-
sitive and specific method for determining what constitutes a normal versus an abnormal classification
of a chest radiograph. In the case of lung nodule detection or in classifying the perfusion of pneumo-
coniosis, multiple radiograph readers (radiologists) are asked to examine and score specific regions of
interest (ROIs). The readers provide size, shape and perfusion grades for the presence of opacities in each
region and then use all the ROI grades to classify the lung as normal or abnormal. The combined grades
from all readers are then used to arrive at a consensus normal or abnormal classification. In this paper,
using area under the ROC curve, we evaluate new mathematical models that are based on mathematical
statistics, logic functions, and several statistical classifiers to analyze reader performance in grading chest
radiographs for pneumoconiosis as the first step toward applying this technique to early detection of
nodules found in lung cancer. In pneumoconiosis, rounded opacities are on the order of 1–10mm in size,
while lung nodules are often not diagnosed until they reach a size on the order of 1 cm.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Lung cancer has one of the worst survival rates of all the types of
cancers. The survival rates have been found to be directly related to
its growth rate and size of the pulmonary nodules when detected.
Chest radiographs continue to be one of the most common modal-
ities used in detecting the lung nodules. Their early detection in
chest radiographs is one of the most challenging tasks performed by
radiologists. computer-aided diagnosis (CAD) techniques have been
shown to be effective in improving sensitivity and specificity of the
radiologists [1–3]. There remains, however, a desire to improve the
specificity of current systems in order to reduce the number of false
positives without sacrifice of the sensitivity [4].

For early detection, our ultimate goal is to achieve high sensi-
tivity and specificity for small (<1 cm), isolated lung nodules. To
test our approach we have applied and tested our models on small
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rounded opacities (1.5–10mm) found in patients who present with
pneumoconiosis. In this application of CAD, radiologists are asked to
score the degree of interstitial lung disease, such as pneumoconioses,
from exposure to dust in work environments.

The pneumoconioses include a number of interstitial lung dis-
eases brought on by the inhalation of dusts in man-made environ-
ments, such as coal and other types of mining. Asbestosis, silicosis,
and coal workers' pneumoconiosis (CWP) are the primarily lung tis-
sue diseases that are of concern. After years of background expo-
sure or after only a few years of intense exposure, these diseases
can progress rapidly and lead to severe lung function impairment. In
addition, several studies have shown a positive correlation between
CWP or progressive massive fibrosis (PMF), and lung cancer, espe-
cially in individuals who smoke. In one form of pneumonconiosis,
silicosis, Honma et al. [5] autopsied 764 non-asbestosis cases and
found a statistically significant number, 19.1%, with lung cancer. Oth-
ers have found similar results. For example, Ebihara [6] discovered
48 cases of carcinoma in 450 autopsies (10.7%), while Katabami et al.
[7] reported 55 cases in 563 patients (9.7%). The American Thoracic
Society (ATS) has described the adverse health effects of exposure
to crystalline silica, including lung cancer [8]. Chest radiographs are
used for screening and detection of pneumoconiosis and other lung
abnormalities, such as lung cancer.
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For pneumoconiosis, human readers are first asked to provide
ratings over six different lung regions, and then use their ratings
to provide an overall classification. The procedure is described in
the guidelines provided by the International Labor Organization
(ILO) [9] and more recently in Ref. [10]. In this paper, we propose
several classification techniques for characterizing the performance
of the human readers, estimating ground truth and establishing
symmetry.

The problem of developing methods for characterizing reader
classification is complicated when there is no absolute agreement
on what constitutes ground truth. Usually, a region of interest (ROI)
is graded by multiple readers, each giving his or her own grade. In
this case, it is often found that there is strong variability between the
grades. Both the inter-observer and intra-observer variability must
be considered [11–15]. In the case of significant differences in the
grades between two readers, both readers will meet and agree on
a common grade [9]. A similar approach can be followed for more
than two readers.

In our study, we develop mathematical models for characteriz-
ing and approximating human reader performance. We investigate
the use of five statistical classifiers [16–20], ranging from the Lo-
gistic classifier, a Bayesian classifier, the K-means classifier, to sum
and weighted sum classifiers that add up the positive grades in the
ROIs. We provide a common, logic function interpretation for all
classifiers, allowing us to investigate several classification issues (see
Ref. [21], and more recently Ref. [22]). For establishing right–left
symmetry, we use weighted kappa statistics [23]. For all classi-
fiers, we compute receiver operating characteristic (ROC) curves,
and use the estimated area under each curve as a performance
measure [24].

Our approach is related to the development of CAD systems,
where we are interested in establishing and understanding how the
different ROIs relate to the overall chest radiograph classification
(see Ref. [25] for a recent example on the use of symmetry). Re-
search for developing CAD for pneumoconiosis dates back to the
1970s [26–28], with a recent resurgence of interest in the late 1990s
[29–35]. More generally, a review of CAD systems for chest radio-
graphs can be found in Ref. [36], while texture analysis methods are
given in Ref. [37].

We next provide background information in Section 2. The
method is then presented in Section 4. After establishing notation, we
provide further motivation for our approach in Section 3. Results are
given in Section 5 and a careful discussion is provided in Section 6.
Concluding remarks are given in Section 7.

2. Background

2.1. A mathematical model

Given an image, let I denote the set of pixels that are in the spatial
support of the image. Define a partition of I by I=R1∪R2∪· · ·∪RM∪B,
where Ri denotes a non-overlapping ROI, M denotes the number of
regions, and B denotes the background region that is not of diagnostic
interest. A grade over the ROIs is defined as a random variable Xi
of each ROI into a set of binary values Xi : Ri → {0, 1}. Here, the
grade refers to the radiologists' perceptual determination whether
lung disease is present or not.

Using the collection of all the grades found for all ROIs Y =
(X1,X2, . . . ,XM), a classification decision is made for the entire image.
We use the symbol Ci to denote the ith classifier (which could repre-
sent a human reader or a computer classification system), and note
that Ci : {0, 1}M → {0, 1, . . . , P − 1}, where {0, 1}M denotes the M-fold
tensor product of the integer set {0, 1}, and P denotes the maximum
number of possible classifications.

2.2. A model for chest radiographs

For chest radiographs of the lung, the mathematical model is
simplified, since we only need to describe the presence of a mark
(×) or its absence in each region. When a mark is present in the ith
lung region, we have that Xi =1. When a mark is absent, we thus set
the corresponding random variable to zero. In this case, the random
variables become binary Xi : Ri → {0, 1}, and the joint distribution
for all ROIs Y = (X1,X2, . . . ,XM) becomes a multivariate Bernoulli.

The international labor organization medical protocol for pneu-
moconiosis divides the lung into six ROIs [9]. We are naturally mostly
interested in small opacities, where opacity presence may not be so
obvious. Our focus is also limited to regular opacities of type q, for
which we could establish the largest population for our study.

We use R1,R2,R3 for the right lung and R4,R5,R6 for the left lung.
We use R1,R2 for the two upper regions, R2,R5 for the middle ones,
and we divide the lung into six ROIs and use a six-dimensional
Bernoulli random vector x = (x1, . . . , x6) to denote the collection of
all of the ROIs. Here, the presence of lung opacities is signified by
assigning a value of 1 to the corresponding random variable. Thus,
x1 = 1 indicates that the reader has marked the presence of opac-
ities in the upper-right lung. For the classification of the entire
chest radiograph, we will only consider two cases: normal (0) and
abnormal (1).

Right lung Left lung

x1 (UR) x4 (UL)
x2 (MR) x5 (ML)
x3 (LR) x6 (LL)

Thus, both the ROIs and the classification of the entire chest radio-
graph can be thought of as binary random variables. To model the
classification by each reader in terms of the ratings of the individual
ROIs, we want to consider binary logic functions C(x1, . . . , x6). Gener-
ally, this formulation is not possible, since it is possible to have the
same binary vectors to map to both normal and abnormal classifica-
tions. To understand how this situation arises, consider the case that
we have two different patients with the same ROI binary vectors. If
a human reader classifies one of the lungs as normal and the other
one as abnormal, we have that the same ROI binary vector will map
to both normal and abnormal. To avoid this problem, for each hu-
man reader, for each unique ROI binary vector, we count the number
of times that he/she classifies a given binary vector as normal and
the number of times that he/she classifies it as abnormal. Then, if
the ROI pattern is most often classified as being normal, we assign
a 1 to the classifier function. Else, we assign a 0. We use the term
maximum-likelihood classification to describe this binary classifica-
tion approach.

3. Motivation

The use of logic functions will provide us with an intuitive ap-
proach for summarizing binary classifiers. We will also use logic
functions to address issues associated with classifier symmetry, dis-
ease growth and generalizability.

In logic function theory, optimal sums of products provide us
with an efficient way of describing the data set in terms of elemen-
tary prototypes; the products. This approach provides us with an
efficient way for describing arbitrary binary classifiers. For example,
the classifier represented by the optimal sum C(x1, . . . , x6)=x1x4+x′

5,
summarizes the classifier in terms of two simple lung-prototypes
x1x4 and x5. To determine the output for any input lung pattern, we
simply need to examine if both the upper lung regions are marked
(x1, x4 = 1) or whether the middle-left lung region is not marked
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x1 x4

x2 x5

x3 x6

x1 x4

x2 x5

x3 x6

Fig. 1. Lung opacity representation using logic expressions. The lung is divided into six-subregions: upper right (x1), middle right (x2), lower right (x3), upper left (x4), middle

left (x5) and lower left (x6). We show: (a) An international labor organization (ILO) standard chest radiograph, (b) the corresponding product term x1x2 . . . x6, and (c) the
corresponding sum term x1 + · · · + x6. Here, we note that product terms require the presence of lung opacities in each region. For example, x1x2 implies opacity presence in
both the first and the second region. In contrast, sum terms only require the presence of lung opacities in at least one region.

(x5 = 0). If either condition is satisfied, the lung should be classified
as positive. Else, we should classify it as negative. To visualize the
lung prototypes, we group them together in the same shape as the
chest radiograph. This is illustrated in Fig. 1(b). Thus, in our example,
we would write

C(x1, . . . , x6) = x1x4 + x′
5 =

⎛
⎝

1 1
− −
− −

⎞
⎠ +

⎛
⎝

− −
− −
− 0

⎞
⎠ ,

where we place a 1 in regions that must be marked, a 0 is placed for
regions that must not be marked and a − is placed for regions that
are not considered.

Similarly, the optimal product of sums representation provide
us with an alternative way of describing the classifiers in terms of
elementary prototypes. For example, the classifier represented by
the optimal product of sums C(x1, . . . , x6)= (x1 +x4)(x2 +x5), requires
that both lung prototypes x1 + x4 and x2 + x5 are satisfied. Thus, in
this case, a lung would need to be marked as positive in at least one
of the upper regions (x1 = 1 or x4 = 1) and also in at least one of the
middle regions (x2 = 1 or x5 = 1). For visualizing sum-terms we use
square brackets as illustrated in Fig. 1(c). In this case, the classifier
would be summarized as

C(x1, . . . , x6) = (x1 + x4)(x2 + x5) =
⎡
⎣
1 1
− −
− −

⎤
⎦ ·

⎡
⎣

− −
1 1
− −

⎤
⎦ .

We also note that these representations are optimal in the sense
that we cannot find another representation with fewer terms and/or
fewer variables. However, it maybe possible to find an equivalent
representation with the same number of terms and the same number
of variables [21].

Given the relative symmetry between the right and the left lungs,
we want to establish whether the classified lung examples follow
this symmetry. We will discuss a statistical method for establishing
this symmetry in Section 5.1. Here, in terms of logic functions, we
note that a symmetric classifier would remain invariant when we
exchange the left variables with the right variables:

CLR(x1, x2, x3, x4, x5, x6) = CLR(x4, x5, x6, x1, x2, x3). (1)

Now, if the location of the marked disease is irrelevant, the classifier
function generalizes Eq. (1) to

Csym(x1, x2, x3, x4, x5, x6) = Csym (any permutation of x1, . . . , x6). (2)

To establish disease growth, let us introduce set notation for
the binary variables. Let the set S denote the list of variables that
are marked positive. For example, if x1 = x4 = 1, we would have
that S = {x1, x4}. Now, suppose that a classifier marks S as positive:
C(S) = C(x1 = 1, x2 = 0, x3 = 0, x4 = 1, x5 = 0, x6 = 0) = 1. Then clearly,
if the disease grows, we would expect that more variables would be
marked as positive. Here, we refer to this disease growth criterion
as it applies to different radiographs from either the same person or
from different persons, from the same group of people. As our medi-
cal team suggested, in pneumoconiosis, the disease progresses from
the top to the bottom of the lung. Thus, individuals with disease in
the middle and lower parts of the lung would be expected to exhibit
the disease in the top parts of the lung. In our example, please recall
that x1 = x4 = 1 refers to the presence of disease in the top regions.
Thus, progression to lower regions implies that any new pattern A
will include x1, x4 in addition to more, lower regions. Clearly, this
model can be extended to any growth and it is not limited to our
example. Mathematically, we write

C(A) = 1 for all A that satisfy S ⊆ A. (3)

It is important to establish that the requirements (1)–(3) are not
mutually exclusive. We clearly have that Eq. (1) implies Eq. (2). As
we shall show next, a simple summation classifier satisfies all re-
quirements. For the summation classifier, we first count the number
of positive ratings using (for ordinary addition)

s(x) = x1 + · · · + x6

and then allocate the radiograph as normal if s(x) <N (some positive
integer N). Else, the radiograph is classified as abnormal.

A simple generalization of the summation classifier is a weighted
classifier s(wTx) for some weight vector w. It is easy to see that
this classifier can satisfy Eqs. (1) and (3) for symmetric weights.
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A related, powerful binary classifier is the Logit classifier (see Section
4.4.2). We will consider the summation classifier, a weighted sum
classifier and the Logit classifier in Section 4.4.

It is interesting to note that the requirements of Eqs. (1)–(3) also
affect the generalizability of the classifier. Clearly, both symmetry
and disease growth requirements provide us with a recipe of re-
quired classifier performance for inputs that may not even exist in
the training data set. For example, if the training set requires that
x1 = x2 = x3 = 1 should be classified as positive, the disease growth
requirement requires that x1 =· · ·=x4 =1, . . . , x1 =· · ·=x6 =1 should
be classified as positive, whether they belong to the training set or
not. Furthermore, these requirements add to the robustness of the
approach.

4. Method

4.1. Material

Since 1989, the Miners' Colfax Medical Center (MCMC) Outreach
Program, in collaboration with pulmonary physicians from the
University of New Mexico Health Sciences Center, has offered free
screening for mining-related diseases to active and retired miners in
the southwestern United States. Persons who have worked in mines
of any type are eligible for this program. Participants are examined
at the MCMC in Raton, NM or in a mobile clinic that periodically vis-
its mining communities in New Mexico and south central Colorado.
Archived posterior–anterior chest radiographs from this program
were used to investigate the nature and presentation of pneumoco-
nioses in approximately 200 miners. Radiographs from the cohort
were analyzed by two NIOSH-certified B-readers and served as a
benchmark for assessing the feasibility of a partially or fully au-
tomated radiograph image analysis system. Institutional review of
the protocol for use of the radiograph set and protection of patient
confidentiality was done by the University of New Mexico Health
Sciences Center Human Research Review Committee (HRRC).

The Miners' Colfax Medical Center Outreach Clinic database con-
sists of thousands of chest radiographs. The database was sufficient
to find the necessary distribution of the disease progression to test
the prototype system. UNM Health Sciences Center has established a
population-based registry of patients with ILD in Bernalillo County,
New Mexico. Chest X-rays for these patients are all read by two
NIOSH-certified B readers. A database of chest radiographs was col-
lected as part of the pre-employment and ongoing health surveil-
lance physicals for GrantsMineral Belt uraniumminers. For our study
in this paper, the X-ray images were recorded from 186 and 33 sub-
jects with profusion of category 0 and 1, respectively. For each im-
age, the grading of the six chest regions (right upper, right middle,
and right lower, and their corresponding left regions) was recorded.
For the results presented in Section 5.2, we used 157 chest radio-
graphs (32 abnormal and 125 normal cases) that were graded by
two human readers.

4.2. Classifier model agreement validation

In this subsection we provide a summary of how we use ROC
curves to evaluate agreement between classifiers. We also provide
details on how we train and test this agreement.

As input features to our classifiers, we generate the entire list of all
(64) possible binary input combinations. In other words, we gener-
ate the input feature values from (x1, x2, x3, x4, x5, x6)= (0, 0, 0, 0, 0, 0)
to (x1, x2, x3, x4, x5, x6)= (1, 1, 1, 1, 1, 1). We then run the classifiers to
classify each possible input. For computing the human reader classifi-
cation we use our training set to compute the most frequent reader's
classification to the presented feature vector (pattern). In the case
when the generated input pattern did not appear as an actual lung

in the training set, we use a k-nearest neighbor classification using
Mahalanobis distances (with k = 3) to other patterns that appeared
in the training set. Here, for the ROC curves, we remind the reader
that our data set consisted of 157 chest radiographs graded by two
human readers (see Section 4.1).

To interpret points on the ROC curve, we provide a quick sum-
mary as it relates to our application. In our approach of measuring
agreement between two classifiers, we designate one of them as the
ground truth classifier and the second one as the proposed classifier.
Here, the ground truth classifier refers to the classifier that we are
trying to approximate using the proposed classifier. In Section 4.3 we
discuss how to estimate the actual physical ground truth based on
the certified reader classifications.

It is thus important to recognize that for training purposes, we use
the designated ground truth classifier as the ground truth. For exam-
ple, suppose that we are using the K-means classifier to approximate
Reader #1. For training, we average all the six-dimensional lung in-
put patterns that Reader #1 gave a normal classification to find the
center for the normal cluster. For the abnormal case, we average all
the six-dimensional patterns that Reader #1 gave an abnormal clas-
sification to determine the center for the abnormal cluster.

Based on this approach, for a test pattern, we have: (i) a true pos-
itive (TP) when both classifiers agree on an abnormal classification,
(ii) a false positive (FP) when the ground truth classifier classifies
an input as normal while the proposed classifier classifies it as ab-
normal, (iii) a true negative (TN) when both classifiers agree on a
normal classification and (iv) a false negative (FN) when the ground
truth classifier classifies an input as abnormal while the proposed
classifier classifies it as normal.

We then define sensitivity and specificity in the usual way,
Sensitivity = TP/(TP + FN), Specificity = TN/(TN + FP) in terms of the
numbers of TPs, FPs, TNs and FNs. As usual, the ROC curves are
generated by plotting Sensitivity versus 1 − Specificity. In our case,
we have that TP + FN = 32, TN + FP = 125 which gives the classifi-
cation accuracy (in %) in terms of sensitivity and specificity using
CC = (32 ∗ Sensitivity + 125 ∗ Specificity)/157 ∗ 100.

For each point of every ROC curve that we display, we perform
validation using the leave one out method. Thus, we test each pat-
tern by training over the rest of them (63). We then compute the
Specificity and Sensitivity for all 64 possible binary input patterns.

The ROC curve itself provides us with a standard visual method
for evaluating the agreement. We also compute the ROC area for
each case. We define the best operating point on the ROC curve as
the point that is closest to Sensitivity=Specificity=1 (using Euclidean
distance, see Table 2).

4.3. Ground truth estimation

To provide estimates of the ground truth, suppose that we have
ratings from two readers: reader A and reader B. Now, let assume
that xi = ai (0 or 1) represents the ratings of reader A, while xi = bi
represents the ratings of reader B. We then consider the minimum
and maximum estimators of the ground truth using

xmin,i = min(ai, bi), i = 1, . . . , 6, and (4)

xmax,i = max(ai, bi), i = 1, . . . , 6. (5)

The definitions given in Eqs. (4)–(5) can be easily extended to any
number of ROIs. Clearly, we would expect that random vector xmin
will underestimate the number of positive ratings, while xmax will
overestimate the number of positive ratings. In general, it is impor-
tant to note that the readers may classify a pattern x as either nor-
mal (0) or abnormal (1). To compute the maximum-likelihood rating
of each reader, we simply compare the number of times that a par-
ticular pattern has been classified as normal versus abnormal. If the
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pattern is classified more often as normal, then the maximum likeli-
hood rating for the pattern is the normal classification. Similarly for
the abnormal case.

Assuming that ri represents the maximum-likelihood rating of
the ith reader, we define the minimum and maximum classifi-
cations as

Cmin = min(r1, r2) and (6)

Cmax = max(r1, r2). (7)

Here, we see that the minimum classifier will tend to underestimate
the ground truth, while the maximum classifier will tend to overes-
timate.

4.4. Classifier models

4.4.1. Bayes classification
The Bayes discriminatory rule, with respect to prior probabilities

�0 for normal (0 or negative) and �1 for abnormal (1 or positive)
(�0 + �1 = 1) is:

If �0p0(x) � �1p1(x)

then allocate sample point x to normal (0)

else allocate sample point to abnormal (1)

Our classification rule is based on the well-known Bayes formula
P[i|x]=�ipi(x) relating the posterior probability P[i|x] in terms of the
prior �i and the probability function of x under pj(x), (j=0, 1). In this
case, the probability functions are six-dimensional Bernoulli with
26 = 64 unknown probabilities pj(x)= Pj[Xi = xi, i= 1, . . . , 6], ith xi = 0
or 1, i = 1, . . . , 6. As an example, to estimate p0(x) for each of the 64
probabilities, we simply count the number of times that each pattern
is classified as normal and divide by the total number of patterns.
It is important to note that complete classification using the Bayes
classifier is not possible due to an insufficient number of samples.
Please note that our comment on an insufficient number of samples
is made with respect to having a sufficient number of cases for every
possible combination of the 64 possible input patterns. Here, please
note that advanced cases were not allowed to continue. Also, since
the disease growth is symmetrical, highly asymmetric cases do not
occur. Of course, the same comment applies to all statistical clas-
sifiers that require knowledge of p0(x) and p1(x) for every possible
value of x. In the case of a missing input, we are thus led to use a
nearest neighbor classifier as detailed in Section 4.2.

4.4.2. Logistic discrimination
In the logistic form for the posterior probabilities for two cate-

gories (normal or abnormal) in the well-known Cox–Day–Kerridge
approach (see, e.g., Ref. [19]), the fitted y = 0 or 1 takes the form

Logit ŷ = 1/(1 + exp[�0 + �1x1 + · · · + �nxn]). (8)

In the present application, x = (x1, . . . , x6), xi = 0 or 1, and n = 6.

4.4.3. K-means classification
In K-means classification, we first compute means for each cat-

egory. For each training sample we compute the Mahalanobis dis-
tance for correlated random variables to each of the means.

4.4.4. Summation classifier
For the summation classifier, we simply add all the binary ratings:

s(x) = x1 + x2 + · · · + x6. (9)

The basic classifier would then need to classify the lung as normal if
s(x) is small. Else, for larger values of s(x), we would classify the lung

as abnormal. To accomplish this and also evaluate the performance
using a ROC curve, we need to consider an adaptive threshold for
s(x). This is accomplished by allocating the radiograph as normal if
s(x) <1+ V where V is a free parameter. Else, the radiograph is clas-
sified as abnormal. Here, V is varied to generate different operating
points.

For normal classification, the use of s(x) <1 + V indicates that a
small number of positive ratings have been counted. For example, for
V=0, we would classify a radiograph as normal if no positive ratings
have beenmarked. On the other hand, for V=6, all radiographswould
be classified as normal while for V = −1, all radiographs would be
classified as abnormal.

4.4.5. Weighted-sum classifier
For the weighted-sum classifier, we consider the weighted aver-

ages

�1(x1, x2, x3) = 1 + x1 + 2x2 + 4x3, (10)

�2(x4, x5, x6) = 1 + x4 + 2x5 + 4x6. (11)

For this classifier, we allocate x as abnormal if either �1 +�2 >4+4V ,
�1 >2+2V or �2 >2+2V . Else, the radiograph is classified as normal.
Here, as for the summation classifier, we vary V to generate different
points on the ROC curves.

The weighted classifier is an extension of basic summation clas-
sifier. Here, as recommended by our medical team, more emphasis
is placed on the middle and lower parts of the lung. Thus, we would
expect that disease would progress from the top (x1, x4) to the mid-
dle and lower portions of the lung. Thus, in defining �1,�2, we use
a weight of 2 for x2, x5 and a weight of 4 for x3, x6. Then, to account
for asymmetries, we define a classification rule based on the sum of
both lungs: �1 + �2 as well as the individual lung sums �1,�2. As for
the summation classifier, the use of different values for V allows us
to classify based on different numbers of positive ratings.

5. Results

5.1. Spatial symmetry

In order to evaluate the validity of a specific classifier, it is im-
portant for us to establish that it satisfies clinical requirements on
disease growth. In this case, we are interested to know if disease
appears equally on the right and left lungs.

To investigate right–left symmetry, we form the right lung sum
S123=x1+x2+x3, and compare it against the left lung sum S456=x4+
x5 + x6. The results are shown in Table 1, where we have restricted
the data set to all pairs for which both of the readers provided a
q-rating.

In perfect left-right symmetry, all the off-diagonal entries would
be zero. The agreement between the two lung grades is evaluated

Table 1
Left-right agreement for pooled data

Right sum Total

0 1 2 3

0 6 8 0 0 14
Left 1 9 116 13 1 139
Sum 2 0 18 78 5 101

3 0 2 9 29 40

Total 15 144 100 35 294

Left-right lung agreement is based on pooled data where both raters selected q
(non-q normal ratings were not considered). The weighted kappa statistic between
right and left lungs was 0.72 with a 95% confidence interval of 0.65–0.78. The simple
kappa statistic was 0.65 with a 95% confidence interval of 0.58–0.72.
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Fig. 2. Optimal lung decompositions as a sum of prototypes. Here, the sum should
be interpreted as a logical or. A positive score for the whole lung requires that
the given lung opacity scores match at least one of the lung prototypes. The logic
description provides an optimal list of possible abnormal lung prototypes for: (a)
the first reader, (b) the second reader, (c) the Min classifier (lower bound on ground
truth), (d) the Max classifier (upper bound on the ground truth) and (e) the list of
common lung prototypes. For each lung prototype, `1' denotes that opacity presence
is required, `0' denotes that opacities should not be present and `–' implies that
there is no requirement for opacity presence or absence.

using both simple and weighted kappa statistics, as shown in
Table 1 [23]. For this example, the overall inter-rater agreement was
found to be very good [23]. Similarly, if examining other types of
symmetries, such as up-down, or rotational symmetries, we simply
form an appropriate sum of variables that we require to remain
fixed.

5.2. Classification modeling results

In this section, we present logic-function representations for the
two readers, the minimum and maximum classifiers (see Section 4),
and ROC curves for the five classifiers given in Section 4. We use
the term classification modeling to refer to the logic-function repre-
sentations for the two readers. We also use the term classification
analysis to refer to the analysis of the logic-function representations.
We provide an interpretation of the results in Section 6.

C1 =

1 1

1 1

1 −

·

1 1

1 1

− 1

C2 = C1 · Cp1

Cmin = C1

Cmax = Cp1 ·

1 1

1 1

1 1

·

1 1

1 1

10

Cp1 =

0 0

0

1 1

1

Fig. 3. Optimal Lung decompositions as a product of prototypes. Here, the product
should be interpreted as a logical and. A positive score for the whole lung requires
that the given lung opacity scores should satisfy the requirements for all prototype
lungs. In particular, the input scores should match at least one of the marked regions
in the prototype lungs. The logic description provides an optimal product list of
possible abnormal lung prototypes for: (a) the first reader, (b) the second reader,
(c) the Min classifier (lower bound on ground truth), (d) the Max classifier (upper
bound on the ground truth) and (e) the list of common lung prototypes.

We present optimal sum of product decompositions in Fig. 2. Al-
ternatively, we provide optimal product of sum decompositions in
Fig. 3. For the decompositions, we use the lung prototype notation
that is presented in Fig. 1. In each case, we present optimal decom-
positions for each classifier using elementary lung prototypes. We
provide more detailed descriptions of each decomposition in the
captions of Figs. 2 and 3.

For the optimal sum of product decompositions, we present com-
parative results using the statistical and summation classifiers in
Figs. 4 and 5. Recall that we use the term best operating point for
the ROC curve point that is closest to the point represented by
Specificity=Sensitivity=1. This point is represented as the upper-left
point in the ROC curves of Fig. 4. We summarize the best operating
points for the summation classifier in Table 2.

6. Discussion

In what follows, we will provide a critical interpretation of the
results. First, we note that the results in Section 5.1 clearly indi-
cate that the lung symmetry criterion applies (see Section 3). In
other words, we expect disease to appear symmetrically on the right
and left lung regions. In what follows, we also discuss the disease
growth criterion and the strong agreement among the classifiers (see
Figs. 4 and 5).

From Fig. 2, we see that Cs1 is shared by all classifiers: C1, C2, Cmin
and Cmax. In both lung prototypes of Cs1, we can see that the
presence of lung opacities in the lower regions implies an abnor-
mal classification. Furthermore, in all common terms: Cs1,Cs2,Cs3,
we can see that we have opacities in at least one of the two
lower lung regions. In the lowest estimate of the abnormal lung:
Cmin, we can see that all lung prototypes require the presence
of opacities in the lower regions (see Fig. 3(c)). Thus, when both
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Fig. 4. Receiver operating characteristic (ROC) curves as measures of agreement
between the proposed methods and (a) reader # 1, (b) reader # 2.

lower lung regions are marked, we expect the lung to be marked as
abnormal. This is in agreement with clinical expectations that the
disease progresses from the top to the bottom of the lung. Thus, if
abnormalities appear in the lower regions, we are confident that the
case is abnormal.

For the optimal product of sums representation, it is interesting
to examine the Cmax classifier shown in Fig. 2(c). Here, we note that
both Cmax and C2 share the common term of Cp1. Now, to satisfy
Cp1,C2,Cmax, we require that at least one of the middle or lower
regions be marked as positive. On the other hand, the expressions
for Cmin and C1 are satisfied even for the simple case where opacities
appear in the upper parts of the lung. As we shall explain next, we
believe that this is an inevitable artifact that significantly limits the
applicability of the product of sums approach.

To understand the limitation of the product of sums approach, we
first note that the optimal product is computed by computing an op-
timal sum of products on the complementary classifier C′(x1, . . . , x6).
In other words, the optimal product of sums provides a summary of
the negative-ratings (zeros) on the lungs while the optimal sum of
products summarizes the positive ratings. However, there is a dis-
proportionate number of negative-ratings as compared to positive
ratings. The reason for this is simple. When pneumoconiosis was
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Fig. 5. Receiver operating characteristic (ROC) curves as measures of agreement
between the proposed methods and (a) the minimum classifier and (b) the maximum
classifier. In (a), the minimum classifier selects the minimum between the reader
classifications. In (b), the maximum classifier selects the maximum between the
reader classifications.

Table 2
Summation classifier approximations to all readers

Reader ROC area Best param. Best sens. Best spec.

Reader # 1 0.99 1 0.94 0.94
Reader # 2 0.94 1 0.97 0.82
Min class. 0.97 0 1.00 0.94
Max class. 0.96 1 1.00 0.80

Please note that the measurements reflect the agreement between the model and
the readers. For example, an ROC area of 1 for Reader # 1 indicates that the
summation classifier can be used to perfectly model the first reader. This is not to
be confused with the ground truth based on the physical lung.

established beyond reasonable doubt, the miner was removed from
exposure to reduce the spread of the disease. As a result, the database
included a limited number of advanced cases. And as an artifact, the
product of sums approach wrongly assumes the missing data sets to
be negative. Note that this violates our requirement for covering the
case for disease progression. We are thus led to only consider the
sum of products results as being valid.
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From Figs. 4 and 5, it is interesting to note that we obtained sim-
ilar classification results from all classifiers. However, please note
that the Logit, Bayesian and K-means classifiers are more complex
than the summation and weighted-sum classifiers. In particular, un-
like the statistical classifiers: Logit, Bayesian and K-means, both the
summation and weighted-sum classifier only require a single param-
eter (see discussion on V in Sections 4.4.4 and 4.4.5). Furthermore, it
is important to note that the summation classifier satisfies the sym-
metry and disease growth criteria that we discussed in Section 3. In
general, we cannot guarantee that the Logit, Bayesian and K-means
classifiers would satisfy these criteria. Thus, we chose the summa-
tion classifier of Eq. (3) as the simplest and most robust classifier. As
we demonstrate in Table 2, the summation classifier can also closely
approximate both readers, the minimum and maximum classifiers.

In terms of estimating the physical lung ground truth, it is clear
from Table 2 that the maximum classifier appears to be the best
choice. At the best operating point, the same summation classifier
(with the same parameter V = 1) can accurately approximate both
readers and the maximum classifier. At the best operating point, the
summation classifier will classify a chest radiograph as being abnor-
mal if two or more ROI regions were marked for disease presence.

7. Conclusion

In this paper, we have presented a number of new models for
characterizing region of interest classifiers. In Section 3, we discussed
the use of logic functions as a unifying model for characterizing all
binary classifiers and also discussed classifier requirements in terms
of symmetry and disease growth. This discussion led to our study
of summation, weighted sum, and the Logit classifiers. Furthermore,
we have introduced the Bayes classifier and the K-means classifier
with Mahalanobis distance for correlated random variables.

We have found that the sum-of-products decomposition is an ef-
fective method for characterizing region of interest classifications.
This approach provides for a very efficient way to summarize binary
classifiers in terms of elementary lung prototypes that can also be
shared among classifiers (see Fig. 2). It is also interesting to note the
excellent performance of the simple summation classifier, allowing
us to approximate all other classifiers while also satisfying our re-
quirements for symmetry and disease growth.

References

[1] H. Suzuki, N. Inaoka, H. Takabatake, M. Mori, H. Natori, A. Suzuki, An experiment
system for detecting lung nodules by chest X-ray image processing, IEEE SPIE
Biomedical Image Processing II, vol. 1450, 1991, pp. 99–107.

[2] J. Lin, S.B. Lo, A. Hasegawa, M.T. Freedman, S.K. Mun, Reduction of false positives
in lung nodule detection using a two-level neural classification, IEEE Trans.
Med. Imaging 15 (1996) 206–217.

[3] X.-W. Xu, K. Doi, T. Kobayashi, H. MacMahon, M.L. Giger, Development of an
improved cad scheme for automated detection of lung nodules in digital chest
images, Med. Phys. 24 (9) (1997) 1395–1403.

[4] H. Yoshida, K. Doi, Computerized detection of pulmonary nodules in chest
radiographs: reduction of false positives based on symmetry between left and
right lungs, in: SPIE Medical Imaging, 2000, pp. 97–102.

[5] K. Honma, K. Chiyotani, K. Kimura, Silicosis, mixed dust pneumoconiosis, and
lung cancer, Am. J. Ind. Med. 32 (6) (1997) 595–599.

[6] I. Ebihara, A pathological study of carcinoma of the lung and pneumoconiosis,
Nihon Kyobu Shikkan Gakkai Zasshi (japanese journal with english abstract
available).

[7] M. Katabami, H. Dosaka-Akita, K. Honma, Y. Saitoh, K. Kimura, Y. Uchida,
H. Mikami, Y. Ohsaki, Y. Kawakami, K. Kikuchi, Pneumoconiosis-related
lung cancers: preferential occurrence from diffuse interstitial fibrosis-type
pneumoconiosis, Am. J. Respir. Crit. Care Med. 162 (1) (2000) 295–300.

[8] A.T. Society, Adverse effects of crystalline silica exposure, Am. J. Respir. Crit.
Care Med. 155 (1997) 761–768.

[9] I.L. Office, Guidelines for the Use of ILO International Classification of
Radiographs of Pneumoconiosis, Geneva, 1980.

[10] K.G. Hering, M. Jacobsen, E. Bosch-Galetke, H.J. Elliehausen, H.G. Hieckel, K.
Hofmann-Preiss, W. Jacques, U. Jeremie, N. Kotschy-Lang, B.M.T. Kraus, W. Raab,
H.J. Raithel, W.D. Schneider, K. Strassburger, S. Tuengerthal, H.J. Woitowitz,
Further development of the international pneumoconiosis classification—from
ilo 1980 to ilo 2000 and to ilo 2000/german federal republic version,
Pneumologie 57 (10) (2003) 576–584.

[11] H. Amandus, E. Pendergrass, W. Morgan, Pneumoconiosis: inter reader
variability in the classification of a type of small opacities in the chest
radiograms, Am. J. Respir. 12 (1974) 740–743.

[12] J. Bourbeau, P. Enst, Between- and within-reader variability in the assessment
of pleural abnormality using the ilo 1980 international classification of
pneumoconiotic chest films, Occup. Med. 14 (1988) 537–543.

[13] N.H. Klerk, A.W. Musk, A. James, J.J. Glancy, W.O. Cookson, Comparison of chest
radiograph reading methods for assessing progress of pneumoconiosis over 10
years in wittenoom crocidolite workers, Br. J. Ind. Med. 47 (2) (1990) 127–131.

[14] D.C. Muir, C.D. Bernholz, W.K. Morgan, J.O. Roos, J. Chan, W. Maehle, J.A.
Julian, A. Sebestyen, Classification of chest radiographs for pneumoconiosis: a
comparison of two methods of reading, Br. J. Ind. Med. 49 (12) (1992) 869–871.

[15] L.S. Welch, K.L. Hunting, J. Balmes, E.A. Bresnitz, T.L. Guidotti, J.E. Lockey,
T. Myo-Lwin, Variability in the classification of radiographs using the 1980
international labor organization classification for pneumoconioses, Chest 114
(6) (1998) 1740–1748.

[16] J.A. Anderson, Separate sample logistic discrimination, Biometrika 59 (1) (1972)
19–35.

[17] J.A. Anderson, Ch. Logistic Discrimination With Medical Applications,
Discriminant Analysis and Applications, Academic Press, New York, 1973
pp. 1–16.

[18] D. Hosmer, S. Lemershow, Applied Logistic Regression, second ed., Wiley, New
York, 2000.

[19] P. McCullagh, J.A. Nelder, Generalized Linear Models, second ed., Chapman &
Hall/CRC, New York, 1999.

[20] J.L. Teugels, Some representations of the multivariate bernoulli and binomial
distributions, J. Multivariate Anal. 32 (2) (1990) 256–268.

[21] E.J. McCluskey, Introduction to the Theory of Switching Circuits, McGraw-Hill,
New York, 1965.

[22] J.F. Wakerly, Digital Design Principles and Practices, fourth ed., Prentice-Hall,
New York, 2005.

[23] J.L. Fleiss, Statistical Methods for Rates and Proportions, second ed., Wiley, New
York, 1981.

[24] C.E. Metz, Fundamental ROC analysis, in: J. Beutel, L. Kundel, R.L.V. Metter
(Eds.), Handbook of Medical Imaging, vol. 2, SPIE Press, 2000, pp. 751–770.

[25] H. Yoshida, Local contralateral subtraction based on bilateral symmetry of lung
for reduction of false positives in computerized detection of pulmonary nodules,
IEEE Trans. Biomed. Eng. 51 (5).

[26] R.P. Kruger, W.B. Thompson, A.F. Turner, Computer diagnosis of pneumoconiosis,
IEEE Trans. Systems Man Cybern. 4 (1) (1974) 40–49.

[27] R.S. Ledley, H.K. Huang, L.S. Rotolo, A texture analysis method in classification
of coal workers' pneumoconiosis, Comput. Biol. Med. 5 (1–2) (1974) 53–67.

[28] A.M. Savol, C.C. Li, R.J. Hoy, Computer-aided recognition of small rounded
pneumoconiosis opacities in chest X-rays, IEEE Trans. Pattern Anal. Mach. Intell.
2 (5) (1980) 479–482.

[29] H. Kobatake, K. Oh'ishi, J. Miyamichi, Automatic diagnosis of pneumoconiosis
by texture analysis of chest X-ray images, in: IEEE ICASSP, 1987, pp. 610–613.

[30] Y. Ugurlu, K. Ohkura, T. Obi, A. Hasegawa, M. Yamaguchi, N. Ohyama,
Detection of increasing profusion of opacities from a sequence of personal
chest radiographs, IEEE International Conference on Image Processing, vol. 3,
1999, pp. 402–406.

[31] Z. Huang, D. Yu, J. Zhao, Application of neural networks with linear and
nonlinear weights in occupational disease incidence forecast, in: IEEE Asia-
Pacific Conference on Circuits and Systems, 2000, pp. 383–386.

[32] H. Kondo, T. Kouda, Detection of pneumoconiosis rounded opacities using
neural network, Joint 9th IFSA World Congress and 20th NAFIPS International
Conference, vol. 3, 2001, pp. 1581–1585.

[33] H. Kondo, T. Kouda, Computer-aided diagnosis for pneumoconiosis using neural
network, in: IEEE Symposium on Computer-Based Systems, 2001, pp. 467–472.

[34] P. Soliz, M.S. Pattichis, J. Ramachandran, D.S. James, Computer-assisted diagnosis
of chest radiographs for pneumoconiosis, SPIE Medical Imaging Conference, vol.
1, San Diego, California, 2001, pp. 667–675.

[35] M.S. Pattichis, C.S. Pattichis, C.I. Christodoulou, D.S. James, L. Ketai, P. Soliz, A
screening system for the assessment of opacity profusion in chest radiographs
of miners with pneumoconiosis, in: 5th IEEE Southwest Symposium on Image
Analysis and Interpretation, Santa Fe, New Mexico, 2002, pp. 130–133.

[36] B. van Ginneken, B.M.T.H. Romeny, M.A. Viergever, Computer-aided diagnosis
in chest radiography: a survey, IEEE Trans. Med. Imaging 20 (12) (2001)
1228–1241.

[37] B. van Ginneken, S. Katsuragawa, B.M.T.H. Romeny, K. Doi, M.A. Viergever,
Automatic detection of abnormalities in chest radiographs, using local texture
analysis, IEEE Trans. Med. Imaging 21 (2) (2002) 139–149.

About the Author—MARIOS S. PATTICHIS received a B.Sc. (high honors and special honors) in computer sciences in 1991, a B.A. (high honors) in mathematics in 1991,
an M.S. in engineering in 1993, and a Ph.D. in computer engineering in 1998, all from the University of Texas at Austin. Currently, he is an Associate Professor with the
Department of Electrical and Computer Engineering and An Associate Professor with the Department of Radiology at the University of New Mexico (UNM), Albuquerque,
New Mexico. His research interests are in the areas of medical image and video processing, digital image and video models, radar image processing, SIMD, and reconfigurable



1066 M.S. Pattichis et al. / Pattern Recognition 42 (2009) 1058 -- 1066

computer architecture applications. He is an associate editor for Pattern Recognition, a guest editor of the special issue in Computational Intelligence in Medical Systems
to be published by the IEEE Transactions in Information Technology in Biomedicine, and the general chair of the 2008 IEEE Southwest Symposium on Image Analysis and
Interpretation, to be held in Santa Fe, New Mexico. At UNM, he received the 2004 ECE distinguished teaching award and the 2006 School of Engineering Harrison Faculty
Recognition Award. He is a Senior Member of IEEE.

About the Author—PETE SOLIZ received his Ph.D. from the University of Oklahoma in 1966. From 1966 to 1986, he was with the Air Force Research Laboratories. In 1997,
he became Vice President and Director of Biomedical Imaging for Kestrel Corporation. He is currently the President and CEO of VisionQuest Biomedical, a company that he
founded in 2006. He is also adjunct Assistant Research Professor with the University of Iowa Department of Ophthalmology and an Adjunct Research Professor with the
University of New Mexico (UNM) School of Medicine. At UNM, Dr. Soliz is collaborating with the Department of Radiology and Radiation Physics in research into radiographic
image quality and lung disease classification. He has published 48 conference and journal articles and has received over $6.9 million in grants from the National Institutes
of Health, the National Medical Testbed, and Pfizer since 2000.

About the Author—THEOPHILOS CACOULLOS received his Ph.D. in Mathematical Statistics from Columbia University in 1962. In 1963–1965, he was an Assistant Professor
with the Department of Statistics at the University of Minnesota. In 1965–1968, he was an Assistant Professor and then Associate Professor in the Department of Industrial
Engineering and Operations Research at the School of Engineering at New York University. From 1968 to 1999, he has been a Professor of Probability and Statistics in the
Department of Mathematics at the University of Athens. He is currently Professor Emeritus at the University of Athens, Greece.
He has held visiting positions at MIT, Stanford, McGill, Columbia, and the University of New Mexico. He founded the Greek Statistical Institute in 1980 and was President of
the Institute from 1981 to 1985. He has been a fellow of IMS since 1986, a fellow of the Royal statistical Society since 1963, and an elected ordinary member of ISI (1971).


	New models for region of interest reader classification analysis in chest radiographs62626262
	Introduction
	Background
	A mathematical model
	A model for chest radiographs

	Motivation
	Method
	Material
	Classifier model agreement validation
	Ground truth estimation
	Classifier models
	Bayes classification
	Logistic discrimination
	K-means classification
	Summation classifier
	Weighted-sum classifier


	Results
	Spatial symmetry
	Classification modeling results

	Discussion
	Conclusion
	References


