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Abstract—The objective of this work is to investigate high-
resolution, high-performance full-wave field solvers towards scal-
able electromagnetic simulations of product-level ICs and elec-
tronics. The emphasis is put on advancing parallel algorithms
that are provably scalable, facilitating a design-through-analysis
paradigm, and enabling concurrent multi-scale modeling and
computation. The capability and benefits of the algorithms are
validated and illustrated through complex 3D IC and electronics
applications.

I. INTRODUCTION

Emerging integrated circuit (IC) and package systems, such
as system-on-a-chip (SoC) s system-on-package (SoP), system-
in-package (SiP), antenna-in-package (AiP) and package-on-
package (PoP) have emerged as an efficient and powerful
solution for realizing complex electronic products with smaller
size, increased functionality and lower cost. The proliferation
of such 3D IC and packaging technologies [1] is opening
up tremendous possibilities for continuing extending Moore’s
Law in designing complex systems with applications ranging
from mobile devices, aerospace electronics, computing and
communications, automotive and medical systems. However,
much potential is not fully exploited yet due to a lack of
comprehensive and high fidelity modeling and simulation tools
in analyzing, designing and verifying increasingly complex
designs and integration.

IC designers and researchers have initiated the transition
from traditional circuit-based simulation to electromagnetic
(EM) field-based modeling methodology to achieve the neces-
sary solution accuracy at higher frequencies [2]–[6]. However,
the growing sophistication in IC design presents significant
computational challenges in existing full-wave field solvers
in terms of desired accuracy, efficiency and scalable paral-
lelism. Furthermore, to accurately predict in-situ IC perfor-
mance, intra-system interactions of 3D interconnects, pack-
ages, printed circuit boards (PCBs) and systems must be
considered simultaneously. One major computational challenge
is that individual sub-systems often exhibit vast differences in
the aspect ratios (ratio of wavelength to feature size). Even
with state-of-the-art full wave approaches, the computational
resources required for such large multi-scale problems are
prohibitively expensive. Consequently, there is an urgent need
for rigorous, hierarchical multi-scale simulation methods to
analyze the performance of these in-situ package systems in
realistic circumstances.

This work aims to investigate first-principles analysis and
verification tools for complex electronic systems ranging from
circuit, package, board and system levels. A novel augmented
multi-region multi-scale domain decomposition (DD) method
is proposed. It introduces a simulation flow that breaks the
entire electronic system into many small sub-systems (or
sub-domains), and applies the best solution strategy to solve
for each sub-system. To facilitate this electrical partitioning
of complex systems, a well-conditioned multi-trace integral
equation formulation is introduced on the surfaces of individual
sub-systems. Subsequently, a Schwarz iterative process is used
to adjust boundary conditions for sub-system problems until
the solution converges. To further improve the efficiency of
this work, we exploit the rank deficiency property exhibited
in the interaction matrices between sub-systems and construct
a hierarchical skeletonization-based compressed system. The
interactions between sub-systems are computed using selected
skeletons, and the Schwarz iteration is performed on the
compressed skeleton system. Numerical results show that the
method is promising to simultaneously simulate heterogeneous
sub-systems exhibiting vast differences in the aspect ratios,
and provides concurrent resolution of multiple scales in the
computational domain.

II. TECHNICAL APPROACH

The proposed scheme follows a hierarchical multi-level
domain partitioning strategy. The electronic system is firstly
divided into case, board and package sub-systems. Each sub-
system may be further decomposed into sub-domains, where
local repetitions and periodicities can be exploited. The domain
partitioning between sub-systems does not need to be shape-
conforming, and the discretizations do not require to be
matching. Thus, model preparation and mesh generation can
be performed concurrently and are naturally parallelizable.

To facilitate this space partitioning of complex systems,
Huygen’s equivalent sources (i.e. electric and magnetic current
sources) are introduced on the surfaces of individual sub-
systems. Subsequently, these sub-systems are coupled to one
another via the representation formula (distant sub-systems)
and transmission conditions (adjacent sub-systems) [7]. An
Schwarz iterative process is used to adjust boundary conditions
for sub-system problems until the solution converges. It is
expected to be a suitable paradigm not only for the high-fidelity
system level simulation that is accurate across the full scale



range, but also for the integration of state-of-the-art solvers
from each sub-system into a powerful solution suite. Thus, the
method is denoted by the multi-region multi-solver domain
decomposition method (MR-MS-DDM).

To illustrate, we consider the case that the electronic system
is decomposed into N sub-systems, Ωm, m = 0, 1, · · ·N .
Through this decomposition, we introduce two pairs of trace
data on each sub-system surface, ∂Ωm. These traces are the
Neumann trace jm and Dirichlet trace em, defined by:

jm =
1

ık0
n̂m ×

1

µrm
∇×Em (1)

em = n̂m ×Em × n̂m (2)

Next, a general Schwarz algorithm [8] for the decomposed
problem can be described as follows: Solve iteratively for
iteration p = 1, 2, · · · the following sub-system problems
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where Gm denotes the full-wave field solver for sub-system
Ωm, and Γmn is the interface between adjacent sub-systems
Ωm and Ωn. Bmn usually consists of tangential pseudo-
differential operators defined at the interface Γmn. Equation (4)
denotes the TC used to couple the Dirichlet and Neumann
traces at the interfaces. For instance, when the first (1st) order
Robin-type TC [9]–[11] is employed, we have Bmn (e, j) :=
e − η̄mj. In a recent work [12]–[14], we propose a second
(2nd) order TC:

Bmn (e, j) := (I + κ1∇τ ×∇τ ×+κ2∇τ∇τ ·) e
− (I + κ3∇τ ×∇τ ×+κ4∇τ∇τ ·) η̄j (5)

at the interface between two different materials, where ∇τ ×
∇τ× and ∇τ∇τ · are 2nd order tangential derivatives and τ
denotes the tangential direction. κ1, κ2, κ3, and κ4 are the
parameters that can be chosen to obtain rapidly converging
algorithms.

To further improve the capability and efficiency of this
work, we construct a hierarchical skeleton-based compressed
system to reduce the computational complexity. It exploits the
rank deficiency property exhibited in the interaction matrices
between sub-systems. We first employ the multi-level skele-
tonization [15] to construct effective basis functions, the so-
called skeletons, from Huygen’s equivalent sources associated
with individual sub-systems. This skeletonization process is
rigorous, error controllable, and can be achieved locally per
sub-system and in parallel. Subsequently, the interactions be-
tween sub-systems will be computed using selected skeletons,
and the DD iteration will be performed on the compressed
skeleton system.

To illustrate, we consider the following linear system after
domain decomposition (for simplicity, two sub-systems are
considered): [

A1 C12
C21 A2

] [
u1

u2

]
=

[
y1

y2

]
(6)

In (6), Am denotes the sub-domain matrix, and Cmn is
the coupling matrix. The matrix equation (6) is solved with
a preconditioned Krylov subspace method with an additive

Schwarz preconditioner [16]. The preconditioned system ma-
trix equation with respect to surface unknowns can be written
as:[
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ū2

]
=

[
ȳ1
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where we have introduced a simple restriction operator R̄m
for the coefficient vector um. We have ūm = R̄mum and
Cmn = R̄TmCmnR̄n.

Next, we apply the multi-level skeletonization to the cou-
pling matrix, which can be expressed as: C̄mn = VmSmnVTn .
After some algebraic manipulations, the reduced system equa-
tion in terms of only the skeletoned surface unknowns can be
written as:[

I VT1 R̄1A−1
1 R̄T1 V̄1S12

VT2 R̄2A−1
2 R̄T2 V̄2S21 I

][
¯̄u1
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]
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]
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where ¯̄um = VTmūm. Once the skeletoned surface unknowns
¯̄um,m = 1, 2, are computed, the solution for each sub-domain
can be recovered through backward substitutions.

In summary, instead of directly applying Schwarz DD
scheme to the original full-scale system with N degrees of
freedom (DOFs), we construct a coarse-grained compressed
system to reduce the DD matrix dimension from O(N) to
O(M), where M is the number of skeletoned surface un-
knowns. A dramatic reduction in computational complexity
is expected since M will be a much smaller number than
N regarding to 3D IC applications of interest. Finally, based
on the proposed algorithms, we have developed a hybrid
MPI/OpenMP parallel implementation of the proposed work
on shared and distributed memory supercomputers.

III. NUMERICAL RESULTS

We first consider a validation example by simulating two
monopole antennas mounted inside a closed surface PEC
cavity. The computational domain is decomposed into three
regions: 1) interior cavity region; 2) long monopole; and
3) short monopole, as shown in Fig. 1. The geometry of
each monopole is also illustrated. After decomposition, the
multi-trace boundary integral equation method [14] is used to
discretize the cavity sub-domain Ω1, and the finite element
method is employed to discretize the antenna sub-domains Ω2

and Ω3. In the simulation, we excite the short monopole and
use the long monopole as the receiving antenna. The computed
S11 and S12 with respect to different operating frequencies
are shown in Fig. 2. The measurement results conducted in
Applied EM Group at University of New Mexico (UNM) are
also given in Fig. 2. We observed an excellent agreement
between the results obtained by computation and measure-
ment. Finally, the surface electric current distributions at two
operating frequencies, f = 831.8MHz and f = 833.2MHz,
are plotted in Fig. 3. One is non-resonant frequency with
S11 = 0.9838 and S12 = 0.0761. The other one is resonant
frequency with S11 = 0.635 and S12 = 0.562.

The second numerical example is a complex electronic
system shown in Fig. 4, in which a product-level IBM package
[17] is integrated on a generic printed circuit board. The
printed circuit board, along with a monopole antenna and
a mode stir, is located inside a complicated perfect electric
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Fig. 1. Configuration of the validation example and geometry of the antennas.

Fig. 2. Comparison of S-parameters obtained by computation and measure-
ment.

conducting (PEC) cavity. As illustrated in Fig. 4, individual
sub-systems exhibit vast differences in the aspect ratios (ratio
of wavelength to feature size).

Following the proposed hierarchical domain partitioning
strategy, the electronic system is firstly divided into cavity,
antenna, mode stir, board and package sub-systems. Each
sub-system is further decomposed into sub-domains based on
the number of processors available and the local memory
each processor can access. Next, the well-conditioned multi-
trace boundary integral equation solver [14] is applied to
electrically large cavity and mode stir sub-domains. The finite
element DD solver [18] is applied to electrically small but
geometrically complicated sub-domains, board, package, and
antenna, respectively. Due to the complexities of the entire
system, it results in 75 millions DOFs and a total number of
624 sub-domains. After skeletonization, we obtain a coarse-
grained compressed DD system with a total number of 5.4
millions surface DOFs.

The simulation requires 8 iterations to reach a relative
residual 10−2. The computation takes 7 hour per iteration.
The surface current and EM field distributions with respect
to antenna radiation at 10GHz are given in Fig. 5. The
results show that the method is promising to simultaneously

(a) f = 831.8MHz

(b) f = 833.2MHz

Fig. 3. Surface electric current at non-resonant and resonant frequencies

simulate heterogeneous sub-systems exhibiting vast differences
in the aspect ratios, and provides concurrent resolution of
multiple scales in the computational domain. The simulation is
conducted at UNM Center for Advanced Research Computing.

IV. CONCLUSION

The objective of this work is to investigate high-resolution
and high-performance full-wave computational methods for
the intra-system EMI analysis of in-situ IC and packages.
The novelties and key technical approaches of the proposed
work include: (i) an optimized geometry-based DD method to
conquer the geometric complexity of physical domain, which
leads to quasi-optimal convergence that is provably scalable for
multi-scale objects. Moreover, it results in parallel and scal-
able computational algorithms to reduce the time complexity
via high performance computing facilities; (ii) a hierarchical
multi-scale simulator for high-definition IC package systems,
where an augmented multi-region multi-solver method via
skeletonization is proposed for efficient multi-scale modeling.
The capability and benefits of the algorithms are explored
and illustrated through several product-level IC and electronics
applications.
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Fig. 4. A complex electronic system from case, board to package level.

Fig. 5. Surface electric current on the complex electronic system using the
augmented MR-MS-DD method
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