Casias Defends Phd: 10am Wed at CHTM

Casias Defends Phd: 10am Wed at CHTM

Ms. Lilian Casias will defend her PhD thesis on Wednesday (March 20) at 10 am in the CHTM building.

Her thesis is entitled "Transport in Mid-Wavelength Infrared (MWIR) p- and n- type InAsSb and InAs/InAsSb Type-II Strained Layer Superlattices (T2SLs) for infrared detection."

Dr. Ganesh Balakrishnan is serving as the Committee Chair for this defense.

Please click this sentence for easy directions to CHTM from ECE.

Here is the abstract from Ms Casias' thesis:

III-V materials such as InAsSb ternaries and InAs/InAsSb Type-II Strained Layer Superlattices (T2SLs) have significant potential for infrared (IR) detector applications, including space-based detection, when utilized in a unipolar barrier detector architecture (nBn). However, recent studies revealed the quantum efficiency in nBn detectors degrades significantly faster from proton-irradiation induced displacement damage as compared to HgCdTe photodiodes. Improving the quantum efficiency radiation-tolerance is theoretically possible by enhancing vertical hole mobility and thereby the vertical hole diffusion length. The vertical hole mobility of T2SLs materials differs significantly from the lateral mobility and measuring it is much less straightforward.

In order to tackle vertical transport, in-plane or lateral transport must be better understood. There are added challenges to determining the in-plane bulk carrier concentration in narrow bandgap materials due to the potential for electron accumulation at the surface of the material and at its interface with the layer grown directly below it. Electron accumulation layers form high conductance electron channels that can dominate both resistivity and Hall-effect transport measurements. Therefore, to correctly determine the in-plane bulk concentration and mobility, temperature- and magnetic-field-dependent transport measurements in conjunction with Multi-Carrier Fit (MCF) analysis were utilized on a series of p-doped InAs0.91Sb0.09 samples on GaSb substrates. The samples are etched to different thicknesses and variable-field measurements are utilized to assist in confirming whether a carrier species represents bulk, interface or surface conduction.

Secondly, n-type temperature- and magnetic-field dependent measurements on InAsSb and InAs/InAsSb T2SLs materials were performed to extract the in-plane transport properties for all the carriers present in each sample under two different doping concentrations (undoped and Silicon-doped). Lastly, substrate-removed, metal-semiconductor-metal (MSM) devices were fabricated to attempt vertical measurements, while standard van der Pauw structures were used for in-plane measurements. The MSM processing serves as a potential fabrication technique to measure vertical transport, that can be improved in the future. The goal of this dissertation is to accurately determine the lateral and vertical transport properties in the presence of multiple carrier species, Multi-Carrier Fit (MCF) and High-Resolution Mobility Spectrum Analysis (HR-MSA) were employed.